Search results for: highstrength steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 750

Search results for: highstrength steel

450 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: System identification, dynamic characteristics, soil-structure system, bending steel frame structure, displacement-based design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
449 Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads

Authors: Mahmoud Miri, Soliman Maramaee

Abstract:

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Keywords: Asymmetric, irregular, seismic analysis, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
448 Design Optimization of Ferrocement-Laminated Plate Using Genetic Algorithm

Authors: M. Rokonuzzaman, Z. Gürdal

Abstract:

This paper describes the design optimization of ferrocement-laminated plate made up of reinforcing steel wire mesh(es) and cement mortar. For the improvement of the designing process, the plate is modeled as a multi-layer medium, dividing the ferrocement plate into layers of mortar and ferrocement. The mortar layers are assumed to be isotropic in nature and the ferrocement layers are assumed to be orthotropic. The ferrocement layers are little stiffer, but much more costlier, than the mortar layers due the presence of steel wire mesh. The optimization is performed for minimum weight design of the laminate using a genetic algorithm. The optimum designs are discussed for different plate configurations and loadings, and it is compared with the worst designs obtained at the final generation. The paper provides a procedure for the designers in decision-making process.

Keywords: Buckling, Ferrocement-Laminated Plate, Genetic Algorithm, Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
447 Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel

Authors: F. Roger, A. Traidia, B. Reynier

Abstract:

Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.

Keywords: Arc welding, Weld pool, Fluid flow, Metallurgical transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
446 Injury Prevention among Construction Workers: A Case Study on Iranian Steel Bar Bending Workers

Authors: S. Behnam Asl, H. Sadeghi Naeini, L. Sadat Ensaniat, R. Khorshidian, S. Alipour, S. Behnam Asl

Abstract:

Nowadays the construction industry is growing specially among developing counties. Iran also has a critical role in these industries in terms of workers disorders. Work-related musculoskeletal disorders (WMSDs) assign 7% of the whole diseases in the society, which make some limitations. One of the main factors, which are ended to WMSDs, is awkward posture. Steel bar bending is considered as one of the prominent performance among construction workers. In this case study we conducted to find the major tasks of bar benders and the most important related risk factors. This study was carried out among twenty workers (18-45 years) as our volunteer samples in some construction sites with less than 6 floors in two regions of Tehran municipality. The data was gathered through in depth observation, interview and questionnaire. Also postural analysis was done by OWAS. In another part of study we used NMQ for gathering some data about psychosocial effects of work related disorders. Our findings show that 64% of workers were not aware of work risks, also about 59% of workers had troubles in their wrists, hands, and especially among workers who worked in steel bar bending. In 46% cases low back pain were prevalence. Considering with gathered data and results, awkward postures and long term tasks and its duration are known as the main risk factors in WMSDs among construction workers, so work-rest schedule and also tools design should be considered to make an ergonomic condition for the mentioned workers.

Keywords: Bar benders, construction workers, musculoskeletal disorders (WMSDs), OWAS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3316
445 Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study

Authors: Govindaraj Ramanathan

Abstract:

The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses.

Keywords: Construction management, delay, non-chronological approach, composite beam, structural integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
444 Impact Behavior of Cryogenically Treated En 52 and 21-4N Valve Steels

Authors: M. Arockia Jaswin, D. Mohan Lal

Abstract:

Cryogenic treatment is the process of cooling a material to extremely low temperatures to generate enhanced mechanical and physical properties. The purpose of this study is to examine the effect of cryogenic treatment on the impact behavior of En 52 and 21-4N valve steels. The valve steels are subjected to shallow (193 K) and deep cryogenic treatment (85 K), and the impact behavior is compared with the valve steel materials subjected to conventional heat treatment. The impact test is carried out in accordance with the ASTM E 23-02a standard. The results show an improvement of 23 % in the impact energy for the En 52 deep cryo-treated samples when compared to that of the conventionally heat treated samples. It is revealed that during cryogenic treatment fine platelets of martensite are formed from the retained austenite, and these platelets promote the precipitation of fine carbides by a diffusion mechanism during tempering.

Keywords: Cryogenic treatment, valve steel, Fractograph, carbides, impact strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4471
443 Erosion in Abrasive Jet Nozzles: A Comprehensive Study

Authors: D. V. Sreekanth, M. Sreenivasa Rao

Abstract:

Abrasive jet machining is one of the promising non-traditional machining processes which uses mechanical energy (pressure and velocity) for machining various materials. The process parameters that influence the metal removal rate are kerfs, surface finish, depth of cut, air pressure, and distance between nozzle and work piece, nozzle diameter, abrasive type, abrasive shape, and mass flow rate of abrasive particles. The abrasive particles coming out with high pressure not only hits work surface but also passes through the nozzle resulting in erosion. This paper focuses mainly on the effect of different parameters on the erosion of nozzle in Abrasive jet machining. Three different types of nozzles made of sapphire, tungsten carbide, and high carbon high chromium steel (HCHCS) are used for machining glass and the erosion of these nozzles are calculated. The results are shown in tabular form and graphical representation.

Keywords: AJM, nozzle, sapphire, tungsten carbide, chrome steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
442 Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI 304L Austenitic Stainless Steel

Authors: S. Krishnan, J. Dumbre, S. Bhatt, Esther T. Akinlabi, R. Ramalingam

Abstract:

The localized corrosion behavior of laser surface melted 304L austenitic stainless steel was studied by potentiodynamic polarization test. The extent of improvement in corrosion resistance was governed by the preferred orientation and the percentage of delta ferrite present on the surface of the laser melted sample. It was established by orientation imaging microscopy that the highest pitting potential value was obtained when grains were oriented in the most close- packed [101] direction compared to the random distribution of the base metal and other laser surface melted samples oriented in [001] direction. The sample with lower percentage of ferrite had good pitting resistance.

Keywords: Crystallographic orientation, Ferrite percentage, Laser melting, Pitting corrosion, 304L SS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
441 Evaluation of Behavior Factor for Steel Moment-Resisting Frames

Authors: Taïeb Branci, Djamal Yahmi, Abdelhamid Bouchair, Eric Fourneley

Abstract:

According to current seismic codes the structures are calculated using the capacity design procedure based on the concept of shear at the base depending on several parameters including behavior factor which is considered to be the most important parameter. The behavior factor allows designing the structure when it is at its ultimate limit state taking into account its energy dissipation through its plastic deformation. The aim of the present study is to assess the basic parameters on which is composed the behavior factor among them the reduction factor due to ductility, and those due to redundancy and the overstrength for steel moment-resisting frames of different heights and regular configuration. Analyses are conducted on these frames using the nonlinear static method where the effect of some parameters on the behavior factor, such as the number of stories and the number of spans, are taken into account. The results show that the behavior factor is rather sensitive to the variation of the number of stories and bays.

Keywords: Behavior, code, frame, ductility, overstrength, redundancy, plastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
440 Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma

Abstract:

Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.

Keywords: Deep cold rolling, burnishing, surface roughness, surface hardness, design of experiments, AISI4140 steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3727
439 Flux Cored Arc Welding Parameter Optimization of AISI 316L (N) Austenitic Stainless Steel

Authors: D.Katherasan, Madana Sashikant, S.Sandeep Bhat, P.Sathiya

Abstract:

Bead-on-plate welds were carried out on AISI 316L (N) austenitic stainless steel (ASS) using flux cored arc welding (FCAW) process. The bead on plates weld was conducted as per L25 orthogonal array. In this paper, the weld bead geometry such as depth of penetration (DOP), bead width (BW) and weld reinforcement (R) of AISI 316L (N) ASS are investigated. Taguchi approach is used as statistical design of experiment (DOE) technique for optimizing the selected welding input parameters. Grey relational analysis and desirability approach are applied to optimize the input parameters considering multiple output variables simultaneously. Confirmation experiment has also been conducted to validate the optimized parameters.

Keywords: bead-on-plate welding, bead profiles, desirability approach, grey relational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
438 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

Authors: J. Dutta, Narendranath S.

Abstract:

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718
437 Inhibition of Pipelines Corrosion Using Natural Extracts

Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed

Abstract:

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Keywords: Inhibition, natural extract, pipelines corrosion, sulphur compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
436 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: Interstitial free, miniaturized tensile specimen, plastic anisotropy, rapid alloy prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50
435 Numerical and Infrared Mapping of Temperature in Heat Affected Zone during Plasma Arc Cutting of Mild Steel

Authors: Dalvir Singh, Somnath Chattopadhyaya

Abstract:

During welding or flame cutting of metals, the prediction of heat affected zone (HAZ) is critical. There is need to develop a simple mathematical model to calculate the temperature variation in HAZ and derivative analysis can be used for this purpose. This study presents analytical solution for heat transfer through conduction in mild steel plate. The homogeneous and nonhomogeneous boundary conditions are single variables. The full field analytical solutions of temperature measurement, subjected to local heating source, are derived first by method of separation of variables followed with the experimental visualization using infrared imaging. Based on the present work, it is suggested that appropriate heat input characteristics controls the temperature distribution in and around HAZ.

Keywords: Conduction Heat Transfer, Heat Affected Zone (HAZ), Infra-Red Imaging, Numerical Method, Orthogonal Function, Plasma Arc Cutting, Separation of Variables, Temperature Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
434 Cost Optimization of Concentric Braced Steel Building Structures

Authors: T. Balogh, L. G. Vigh

Abstract:

Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.

Keywords: Dissipative Structures, Genetic Algorithm, Seismic Effects, Structural Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
433 Product-Based Industrial Information Systems (Application to the Steel Industry)

Authors: Daniel F. Garcia, Diego Gonzalez

Abstract:

This paper shows a simple and effective approach to the design and implementation of Industrial Information Systems (IIS) oriented to control the characteristics of each individual product manufactured in a production line and also their manufacturing conditions. The particular products considered in this work are large steel strips that are coiled just after their manufacturing. However, the approach is directly applicable to coiled strips in other industries, like paper, textile, aluminum, etc. These IIS provide very detailed information of each manufactured product, which complement the general information managed by the ERP system of the production line. In spite of the high importance of this type of IIS to guarantee and improve the quality of the products manufactured in many industries, there are very few works about them in the technical literature. For this reason, this paper represents an important contribution to the development of this type of IIS, providing guidelines for their design, implementation and exploitation.

Keywords: Data storage, industrial information systems, measurement systems integration, signal acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
432 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints

Authors: Mohammad Reza Ghasemi, Amin Ghorbani

Abstract:

The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.

Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
431 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas,

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
430 Titanium-Aluminum Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.

Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
429 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams

Authors: Fares Jnaid, Riyad Aboutaha

Abstract:

In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.

Keywords: FEA, ANSYS, Unbond, Strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3185
428 Analytical Modelling of Average Bond Stress within the Anchorage of Tensile Reinforcing Bars in Reinforced Concrete Members

Authors: Maruful H. Mazumder, Raymond I. Gilbert, Zhen- T. Chang

Abstract:

A reliable estimate of the average bond stress within the anchorage of steel reinforcing bars in tension is critically important for the design of reinforced concrete member. This paper describes part of a recently completed experimental research program in the Centre for Infrastructure Engineering and Safety (CIES) at the University of New South Wales, Sydney, Australia aimed at assessing the effects of different factors on the anchorage requirements of modern high strength steel reinforcing bars. The study found that an increase in the anchorage length and bar diameter generally leads to a reduction of the average ultimate bond stress. By the extension of a well established analytical model of bond and anchorage, it is shown here that the differences in the average ultimate bond stress for different anchorage lengths is associated with the variable degree of plastic deformation in the tensile zone of the concrete surrounding the bar.

Keywords: Anchorage, Bond stress, Development length, Reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
427 Fatigue Failure Analysis in AISI 304 Stainless Wind Turbine Shafts

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Wind turbines are equipment of great importance for generating clean energy in countries and regions with abundant winds. However, complex loadings fluctuations to which they are subject can cause premature failure of these equipment due to the material fatigue process. This work evaluates fatigue failures in small AISI 304 stainless steel turbine shafts. Fractographic analysis techniques, chemical analyzes using energy dispersive spectrometry (EDS), and hardness tests were used to verify the origin of the failures, characterize the properties of the components and the material. The nucleation of cracks on the shafts' surface was observed due to a combined effect of variable stresses, geometric stress concentrating details, and surface wear, leading to the crack's propagation until the catastrophic failure. Beach marks were identified in the macrographic examination, characterizing the probable failure due to fatigue. The sensitization phenomenon was also observed.

Keywords: Fatigue, sensitization phenomenon, stainless steel shafts, wind turbine failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
426 Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions

Authors: J. Menčík, B. Culek, Jr., L. Beran, J. Mareš

Abstract:

Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.

Keywords: Bridges, carbonatation, concrete, diagnostics, fatigue, life prediction, monitoring, railway, simulation, structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
425 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling

Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali

Abstract:

This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.

Keywords: Laser-sintered material, tool life, wear mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
424 Reliability of Slender Reinforced Concrete Columns: Part 1

Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh

Abstract:

The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.

Keywords: Reliability, reinforced concrete, safety, slender column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
423 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method

Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar

Abstract:

In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.

Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4245
422 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading

Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki

Abstract:

Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.

Keywords: Finite element approach, hybrid girder, headed stud shear connections, sustained loading, time dependent shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
421 Performance of BRBF System and Comparing it with the OCBF

Authors: E.Talebi, F.Zahmatkesh

Abstract:

Buckling-Restrained Braced Frame system(BRBFs) are a new type of steel seismic-load-resisting system that has found use in several countries because of its efficiency and its promise of seismic performance far superior to that of conventional braced frames. The system is addressed in the 2005 edition of the AISC Seismic Provisions for Structural Steel Buildings, also a set of design provisions has been developed by NEHRP. This report illustrates the seismic design of buckling restrained braced frames and compares the result of design in the application of earthquake load for ordinary bracing systems and buckling restrained bracing systems to see the advantage and disadvantages of this new type of seismic resisting system in comparison with the old Ordinary Concentric Braced Frame systems (OCBFs); they are defined by the provisions governing their design.

Keywords: Buckling Restrained Braced Frame system (BRBFs), Ordinary Concentric Braced Frame systems (OCBFs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908