Search results for: eigen-analysis for stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1254

Search results for: eigen-analysis for stability

1014 Stability Analysis for a Multicriteria Problem with Linear Criteria and Parameterized Principle of Optimality “from Lexicographic to Slater“

Authors: Yury Nikulin

Abstract:

A multicriteria linear programming problem with integer variables and parameterized optimality principle "from lexicographic to Slater" is considered. A situation in which initial coefficients of penalty cost functions are not fixed but may be potentially a subject to variations is studied. For any efficient solution, appropriate measures of the quality are introduced which incorporate information about variations of penalty cost function coefficients. These measures correspond to the so-called stability and accuracy functions defined earlier for efficient solutions of a generic multicriteria combinatorial optimization problem with Pareto and lexicographic optimality principles. Various properties of such functions are studied and maximum norms of perturbations for which an efficient solution preserves the property of being efficient are calculated.

Keywords: Stability and accuracy, multicriteria optimization, lexicographic optimality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
1013 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: Clustering, heterogeneous, stability, scalability, throughput, IoT, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
1012 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm

Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy

Abstract:

Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.

Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
1011 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: Adaptive Cruise Control, Centralized Server, Networked Model Predictive Control, String Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
1010 Vaccinated Susceptible Infected and Recovered (VSIR) Mathematical Model to Study the Effect of Bacillus Calmette-Guerin (BCG) Vaccine and the Disease Stability Analysis

Authors: Muhammad Shahid, Nasir-uddin Khan, Mushtaq Hussain, Muhammad Liaquat Ali, Asif Mansoor

Abstract:

Tuberculosis (TB) remains a leading cause of infectious mortality. It is primarily transmitted by the respiratory route, individuals with active disease may infect others through airborne particles which releases when they cough, talk, or sing and subsequently inhale by others. In order to study the effect of the Bacilli Calmette-Guerin (BCG) vaccine after vaccination of TB patient, a Vaccinated Susceptible Infected and Recovered (VSIR) mathematical model is being developed to achieve the desired objectives. The mathematical model, so developed, shall be used to quantify the effect of BCG Vaccine to protect the immigrant young adult person. Moreover, equations are to be established for the disease endemic and free equilibrium states and subsequently utilized in disease stability analysis. The stability analysis will give a complete picture of disease annihilation from the total population if the total removal rate from the infectious group should be greater than total number of dormant infections produced throughout infectious period.

Keywords: Bacillus Calmette-Guerin vaccine, disease-free equilibrium state, VSIR Quantification, disease stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1009 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization

Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao

Abstract:

Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.

Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1008 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: Control, limits cycle, robot, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
1007 Methodology for Quantifying the Meaning of Information in Biological Systems

Authors: Richard L. Summers

Abstract:

The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems is fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.

Keywords: Semiotic meaning, Shannon information, Lyapunov, living systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
1006 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: Amplifier, DVB-T, LDMOS, MOSFETS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
1005 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: Ballast, dynamic response, sleeper, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1004 Design of an Stable GPC for Nonminimum Phase LTI Systems

Authors: Mahdi Yaghobi, Mohammad Haeri

Abstract:

The current methods of predictive controllers are utilized for those processes in which the rate of output variations is not high. For such processes, therefore, stability can be achieved by implementing the constrained predictive controller or applying infinite prediction horizon. When the rate of the output growth is high (e.g. for unstable nonminimum phase process) the stabilization seems to be problematic. In order to avoid this, it is suggested to change the method in the way that: first, the prediction error growth should be decreased at the early stage of the prediction horizon, and second, the rate of the error variation should be penalized. The growth of the error is decreased through adjusting its weighting coefficients in the cost function. Reduction in the error variation is possible by adding the first order derivate of the error into the cost function. By studying different examples it is shown that using these two remedies together, the closed-loop stability of unstable nonminimum phase process can be achieved.

Keywords: GPC, Stability, Varying Weighting Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
1003 Influence of Inhomogeneous Wind Fields on the Aerostatic Stability of a Cable-Stayed Pedestrian Bridge without Backstays: Experiments and Numerical Simulations

Authors: Yanru Wu, Qing Sun

Abstract:

Sightseeing glass bridges located in steep valley area are being built on a large scale owing to the development of tourism. Consequently, their aerostatic stability is seriously affected by the wind field characteristics created by strong wind and special terrain, such as wind speed and wind attack angle. For instance, a cable-stayed pedestrian bridge without backstays comprised of a 60-m cantilever girder and the glass bridge deck is located in an abrupt valley, acting as a viewing platform. The bridge’s nonlinear aerostatic stability was analyzed by the segmental model test and numerical simulation in this paper. Based on aerostatic coefficients of the main girder measured in wind tunnel tests, nonlinear influences caused by the structure and aerostatic load, inhomogeneous distribution of torsion angle along the bridge axis, and the influence of initial attack angle were analyzed by using the incremental double iteration method. The results show that the aerostatic response varying with speed shows an obvious nonlinearity, and the aerostatic instability mode is of the characteristic of space deformation of bending-twisting coupling mode. The vertical and torsional deformation of the main girder is larger than its lateral deformation, with the wind speed approaching the critical wind speed. The flow of negative attack angle will reduce the bridges’ critical stability wind speed, but the influence of the negative attack angle on the aerostatic stability is more significant than that of the positive attack angle. The critical wind speeds of torsional divergence and lateral buckling are both larger than 200 m/s; namely, the bridge will not occur aerostatic instability under the action of various wind attack angles.

Keywords: Aerostatic nonlinearity, cable-stayed pedestrian bridge, numerical simulation, nonlinear aerostatic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
1002 The Effects of Eight-Week Pilates Training on Limits of Stability and Abdominal Muscle Strength in Young Dancers

Authors: Yen-Ting Wang, Pao-Cheng Lin, Chen-Fu Huang, Lung-Ching Liang, Alex J.Y. Lee

Abstract:

This study examined the effects of 8-week Pilates training program on limits of stability (LOS) and abdominal muscle strength in young dancers. Twenty-four female volunteered and randomly assigned as experimental group (EG) or control group (CG). All subjects received the same dance lessons but the EG underwent an extra Pilates mat exercises for 40 minutes, three times a week, for 8 weeks. LOS was evaluated by the Biodex Balance System and the abdominal strength was measured by 30/60 seconds sit-ups test. One factor ANCOVA was used to examine the differences between groups after training. The results showed that the overall LOS scores at levels 2/8 and the 30/60 seconds sit-ups for the EG group pre- and post-training were changed from 22/38 % to 31/51 % and 20/33 times to 24/42 times, respectively. The study demonstrated that 8-week Pilates training can improve the LOS performance and abdominal strength in young dancers.

Keywords: Balance, Core Strength Exercise Training, and Posture Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
1001 Dynamics and Feedback Control for a New Hyperchaotic System

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

In this paper, stability and Hopf bifurcation analysis of a novel hyperchaotic system are investigated. Four feedback control strategies, the linear feedback control method, enhancing feedback control method, speed feedback control method and delayed feedback control method, are used to control the hyperchaotic attractor to unstable equilibrium. Moreover numerical simulations are given to verify the theoretical results.

Keywords: Feedback control, Hopf bifurcation, hyperchaotic system, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
1000 A Comparative Study on Different Approaches to Evaluate Ship Equilibrium Point

Authors: Alessandro A. Zizzari, Francesca Calabrese, Giovanni Indiveri, Andrea Coraddu, Diego Villa

Abstract:

The aim of this paper is to present a comparative study on two different methods for the evaluation of the equilibrium point of a ship, core issue for designing an On Board Stability System (OBSS) module that, starting from geometry information of a ship hull, described by a discrete model in a standard format, and the distribution of all weights onboard calculates the ship floating conditions (in draught, heel and trim).

Keywords: Algorithms, Computer applications, Equilibrium, Marine applications, Stability System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
999 Installation Stability of Low Temperature Steel Mesh in LNG Storage

Authors: Rui Yu, Huiqing Ying

Abstract:

To enhance installation security, a LNG storage in Rudong of Jiangsu province was adopted as a practical work, and it was analyzed by nonlinear finite element method to research overall and local stability performance, as well as the stress and deformation under the action of wind load and self-weight. Results indicate that deformation is tiny when steel mesh maintains as an overall ring, and stress caused by vertical bending moment and tension of bottom tie wire are also in the safe range. However, axial forces of lap reinforcement in adjacent steel mesh exceed the ultimate bearing capacity of tie wire. Hence, tie wires are ruptured; single mesh loses lateral connection and turns into monolithic status as the destruction of overall structure. Further more, monolithic steel mesh is led to collapse by the damage of bottom connection. So, in order to prevent connection failure and enhance installation security, the overlapping parts of steel mesh should be taken more reliable measures.

Keywords: low temperature steel mesh, installation stability, nonlinear finite element, tie wire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
998 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
997 Stable Delta-Sigma Modulator with Signal Dependent Forward Path Gain for Industrial Applications

Authors: K. Diwakar, K. Aanandha Saravanan, C. Senthilpari

Abstract:

Higher order ΔΣ Modulator (DSM) is basically an unstable system. The approximate conditions for stability cannot be used for the design of a DSM for industrial applications where risk is involved. The existing second order, single stage, single bit, unity feedback gain , discrete DSM cannot be used for the normalized full range (-1 to +1) of an input signal since the DSM becomes unstable when the input signal is above ±0.55. The stability is also not guaranteed for input signals of amplitude less than ±0.55. In the present paper, the above mentioned second order DSM is modified with input signal dependent forward path gain. The proposed DSM is suitable for industrial applications where one needs the digital representation of the analog input signal, during each sampling period. The proposed DSM can operate almost for the full range of input signals (-0.95 to +0.95) without causing instability, assuming that the second integrator output should not exceed the circuit supply voltage, ±15 Volts.

Keywords: DSM, stability, SNR, state variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
996 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: Offshore platforms, stability, postulated failure, dynamic tether tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
995 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: Atomic Clusters, Density Functional Theory, Jellium Model, Magic Clusters, Smart Nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
994 Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils

Authors: Helena M. Wilhelm, Paulo O. Fernandes, Laís P. Dill, Kethlyn G. Moscon

Abstract:

The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.

Keywords: Compatibility, Rancimat, natural ester, vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
993 Complex Dynamics of Bertrand Duopoly Games with Bounded Rationality

Authors: Jixiang Zhang, Guocheng Wang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, Discrete dynamical system, Heterogeneous expectations, Nash equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
992 Modelling the Role of Prophylaxis in Malaria Prevention

Authors: Farai Nyabadza

Abstract:

Malaria is by far the world-s most persistent tropical parasitic disease and is endemic to tropical areas where the climatic and weather conditions allow continuous breeding of the mosquitoes that spread malaria. A mathematical model for the transmission of malaria with prophylaxis prevention is analyzed. The stability analysis of the equilibria is presented with the aim of finding threshold conditions under which malaria clears or persists in the human population. Our results suggest that eradication of mosquitoes and prophylaxis prevention can significantly reduce the malaria burden on the human population.

Keywords: Prophylaxis prevention, basic reproductive number, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
991 Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales

Authors: Meng Hu, Lili Wang

Abstract:

By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.

Keywords: Anti-periodic solution, coincidence degree, CGSICNNs, impulse, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
990 A Combined Conventional and Differential Evolution Method for Model Order Reduction

Authors: J. S. Yadav, N. P. Patidar, J. Singhai, S. Panda, C. Ardil

Abstract:

In this paper a mixed method by combining an evolutionary and a conventional technique is proposed for reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM). In the conventional technique, the mixed advantages of Mihailov stability criterion and continued Fraction Expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. Then, retaining the numerator polynomial, the denominator polynomial is recalculated by an evolutionary technique. In the evolutionary method, the recently proposed Differential Evolution (DE) optimization technique is employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. The proposed method is illustrated through a numerical example and compared with ROM where both numerator and denominator polynomials are obtained by conventional method to show its superiority.

Keywords: Reduced Order Modeling, Stability, Mihailov Stability Criterion, Continued Fraction Expansions, Differential Evolution, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
989 Effect of Core Stability Ex ercises on Trunk Muscle Balance in Healthy Adult Individuals

Authors: Amira A. A. Abdallah, Amir A. Beltagi

Abstract:

Background: Core stability training has recently attracted attention for improving muscle balance and optimizing performance in healthy and unhealthy individuals. Purpose: This study investigated the effect of beginner’s core stability exercises on trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals participated in the study. They were randomly assigned to two groups; experimental “group I, n=20” and control “group II, n=15”. Their mean age, weight and height were 20.7±2.4 vs. 20.3±0.61 years, 66.5±12.1 vs. 68.57±12.2 kg and 166.7±7.8 vs. 164.28 ±7.59 cm. for group I vs. group II. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The 2x2 Mixed Design ANOVA revealed that there were no significant differences (p>0.025) in the trunk flexors’/extensors’ peak torque ratio between the pre-test and post-test conditions for either group. Moreover, there were no significant differences (p>0.025) in the trunk flexion/extension ratios between both groups at either condition. However, the 2x2 Mixed Design MANOVA revealed significant increases (p<0.025) in the trunk flexors’ and extensors’ peak torques in the post-test condition compared with the pre-test in group I with no significant differences (p>0.025) in group II. Moreover, there was a significant increase (p<0.025) in the trunk flexors’ peak torque only in group I compared with group II in the post-test condition with no significant differences in the other conditions. Interpretation/Conclusion: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.

Keywords: Core Stability, Isokinetic, Trunk Muscles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3630
988 A Cohesive Lagrangian Swarm and Its Application to Multiple Unicycle-like Vehicles

Authors: Jito Vanualailai, Bibhya Sharma

Abstract:

Swarm principles are increasingly being used to design controllers for the coordination of multi-robot systems or, in general, multi-agent systems. This paper proposes a two-dimensional Lagrangian swarm model that enables the planar agents, modeled as point masses, to swarm whilst effectively avoiding each other and obstacles in the environment. A novel method, based on an extended Lyapunov approach, is used to construct the model. Importantly, the Lyapunov method ensures a form of practical stability that guarantees an emergent behavior, namely, a cohesive and wellspaced swarm with a constant arrangement of individuals about the swarm centroid. Computer simulations illustrate this basic feature of collective behavior. As an application, we show how multiple planar mobile unicycle-like robots swarm to eventually form patterns in which their velocities and orientations stabilize.

Keywords: Attractive-repulsive swarm model, individual-based swarm model, Lagrangian swarm model, Lyapunov stability, Lyapunov-like function, practical stability, unicycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
987 Efficacy and Stability of Ceramic Powder to Inactivate Avian Influenza Virus

Authors: Chanathip Thammakarn, Misato Tsujimura, Keisuke Satoh, Tomomi Hasegawa, Miho Tamura, Akinobu Kawamura, Yuki Ishida, Atsushi Suguro, Hakimullah Hakim, Sakchai Ruenphet, , Kazuaki Takehara

Abstract:

This experiment aims to demonstrate the efficacy of ceramic powder derived from various sources to inactivate avian influenza virus and its possibility to use in the environment. The ceramics used in the present experiment were derived from chicken feces (CF), scallop shell (SS), polyvinyl chloride (PVC) and soybean (SB). All ceramics were mixed with low pathogenic AIV (LPAIV) H7N1, and then kept at room temperature. The recovered virus was titrated onto Madin-Darby canine kidney (MDCK) cells. All ceramics were assessed the inactivation stability in the environment by keeping under sunlight and under wet-dry condition until reached 7 week or 7 resuspension times respectively. The results indicate that all ceramics have excellent efficacy to inactivate LPAIV. This efficacy can be maintained under the simulated condition. The ceramics are expected to be the good materials for application in the biosecurity system at farms.

Keywords: Avian Influenza, Ceramics, Efficacy, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
986 Chemical Destabilization on Water in Crude Oil Emulsions

Authors: Abdurahman H. N., M. Nuraini

Abstract:

Experimental data are presented to show the influence of different types of chemical demulsifier on the stability and demulsification of emulsions. Three groups of demulsifier with different functional groups were used in this work namely amines, alcohol and polyhydric alcohol. The results obtained in this study have exposed the capability of chemical breaking agents in destabilization of water in crude oil emulsions. From the present study, found that molecular weight of the demulsifier were influent the capability of the emulsion to separate.

Keywords: Demulsification, emulsions, stability, breakingagent, destabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6003
985 Local Stability of Equilibria: Leptospirosis

Authors: Rujira Kongnuy

Abstract:

Leptospirosis is recognized as an important zoonosis in tropical regions well as an important animal disease with substantial loss in production. In this study, the model for the transmission of the Leptospirosis disease to human population are discussed. Model is described the vector population dynamics and the Leptospirosis transmission to the human population are discussed. Local analysis of equilibria are given. We confirm the results by using numerical results.

Keywords: Eigenvalues, Leptospirosis, Local Stability, Numerical Result

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261