Search results for: cyclic loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 803

Search results for: cyclic loading

563 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: Coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
562 Effect of Impact Load on the Bond between Steel and CFRP Laminate

Authors: A. Al-Mosawe, R. Al-Mahaidi

Abstract:

Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.

Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
561 High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor

Authors: Subrata Hait, Debabrata Mazumder

Abstract:

A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.

Keywords: Activated sludge process, shaft-type reactor, highrate treatment, carbonaceous wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3601
560 Optimization of Transmission Lines Loading in TNEP Using Decimal Codification Based GA

Authors: H. Shayeghi, M. Mahdavi

Abstract:

Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e., expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using genetic algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. Finally, adequacy index could be defined and used to compare some designs that have different investment costs and adequacy rates. In this paper, the proposed idea has been tested on the Garvers network. The results show that the network will possess maximum efficiency economically.

Keywords: Adequacy Optimization, Transmission Expansion Planning, DCGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
559 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments

Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa

Abstract:

Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.

Keywords: Soil-Structure Interaction, RC pile, RC Tunnel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
558 Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen

Authors: M. Nikbakht, N. Choupani

Abstract:

In this study the behavior of interlaminar fracture of carbon-epoxy thermoplastic laminated composite is investigated numerically and experimentally. Tests are performed with Arcan specimens. Testing with Arcan specimen gives the opportunity of utilizing just one kind of specimen for extracting fracture properties for mode I, mode II and different mixed mode ratios of materials with exerting load via different loading angles. Variation of loading angles in range of 0-90° made possible to achieve different mixed mode ratios. Correction factors for various conditions are obtained from ABAQUS 2D finite element models which demonstrate the finite shape of Arcan specimens used in this study. Finally, applying the correction factors to critical loads obtained experimentally, critical interlaminar fracture toughness of this type of carbon- epoxy composite has been attained.

Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
557 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines

Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines. 

Keywords: Beam deformation, EPS block, laboratory test, post-beam system, soil surface settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
556 Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials

Authors: M.C.S. Ribeiro, J.P. Meixedo, A. Fiúza, M.L. Dinis, Ana C. Meira Castro, F.J.G. Silva, C. Costa, F. Ferreira, M.R. Alvim

Abstract:

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Keywords: GFRP waste, Mechanical behaviour, Polymer mortars, Recyclability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
555 Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate: Effect of Processing Parameters

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials of two different methodologies are discussed. Methodology 1 revealed that the addition of layered silicate into the polymer matrix increased the mechanical and thermal properties up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the properties which was traced to the existence of aggregation layers. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. On the other hand, methodology 2 increased the mechanical and thermal properties up to 4 wt.% clay loading. The different amounts of improvements were assigned to the various preparation parameters. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilized in order to characterize the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, mechanical properties, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
554 Job Stressors and Coping Mechanisms among Emergency Department Nurses in the Armed Force Hospitals of Taiwan

Authors: Wei-Wen Liu, Feng-Chuan Pan, Pei-Chi Wen, Sen-Ji Chen, Su-Hui Lin

Abstract:

Nurses in an Armed Force Hospital (AFH) expose to stronger stress than those in a civil hospital, especially in an emergency department (ED). Ironically, stresses of these nurses received few if any attention in academic research in the past. This study collects 227 samples from the emergency departments of four armed force hospitals in central and southern Taiwan. The research indicates that the top five stressors are a massive casualty event, delayed physician support, overloads of routine work, overloads of assignments, and annoying paper work. Excessive work loading was found to be the primary source of stress. Nurses who were perceived to have greater stress levels were more inclined to deploy emotion-oriented approaches and more likely to seek job rotations. Professional stressors and problem-oriented approaches were positively correlated. Unlike other local studies, this study concludes that the excessive work-loading is more stressful in an AFH.

Keywords: Emergency nurse, Job stressor, Coping behavior, Armed force hospital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
553 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

Authors: A. A. Okeola, T. I. Sijuade

Abstract:

Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.

Keywords: Compressive strength, plastic fibre, concrete, curing, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
552 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: Collapse load analysis, inelastic buckling, liquefaction, pile group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
551 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars

Authors: Othman S. Alsheraida, Sherif El-Gamal

Abstract:

Fiber Reinforced Polymer (FRP) is a composite material with exceptional properties that are capable to replace conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars are limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.

Keywords: Anchorage, concrete, epoxy, FRP, pre-stressed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
550 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement

Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu

Abstract:

Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties, which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8 and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4 and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall Stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.

Keywords: Crumb rubber, dry process, low-density polyethylene, hot mix asphalt, wet process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4644
549 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading

Authors: S. Madhu, V. V. Subba Rao

Abstract:

In the implementation of Carbon Nanotube Reinforced Polymer matrix Composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using classical laminate plate theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.

Keywords: Carbon Nanotube, Micromechanics, Composite plate, Multi-scale analysis, Classical Laminate Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
548 Reinforced Concrete Slab under Static and Dynamic Loadings

Authors: Aaron Aboshio, Jianqioa Ye

Abstract:

In this study, static and dynamic responses of a typical reinforced concrete solid slab, designed to British Standard (BS 8110: 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view of justifying valid optimization objective function for the structure that can ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.

Keywords: Economical design, Finite element method, Modal dynamics, Reinforced concrete, Slab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4574
547 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
546 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems

Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis

Abstract:

Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.

Keywords: Economic Dispatch, Non-Convex Cost Functions, Valve Point Loading Effect, Q-Learning, Eligibility Traces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
545 A Study on Fatigue Performance of Asphalt Using AMPT

Authors: Yuan Jie Kelvin Lu, Amin Chegenizadeh

Abstract:

Asphalt pavement itself is a mixture made up of mainly aggregates, binders, and fillers that acts as a composition used for pavement construction. An experimental program was setup to determine the fatigue performance test of Asphalt with three different grades of conventional binders. Asphalt specimen has achieved the maximum optimum bulk density and air voids with a consistent bulk density of 2.3 t/m3, with an air void of 5% ± 0.5, before loading into the Asphalt Mixture Performance Tested (AMPT) for fatigue test. The number of cycles is defined as the point where phase angle drops, which is caused by the formation of cracks due to the increasing micro cracks when asphalt is undergoing repeated cycles of loading. Thus, the data collected are analyzed using the drop of phase angle as failure criteria. Based in the data analyzed, it is evident that the fatigue life of asphalt lies on the grade of binder. The result obtained shows that all specimens do experience a drop in phase angle due to macro cracks in the asphalt specimen.

Keywords: Asphalt binder, AMPT, CX test, simplified–viscoelastic continuum damage (S-VECD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
544 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
543 A Novel Method to Evaluate Line Loadability for Distribution Systems with Realistic Loads

Authors: K. Nagaraju, S. Sivanagaraju, T. Ramana, V. Ganesh

Abstract:

This paper presents a simple method for estimation of additional load as a factor of the existing load that may be drawn before reaching the point of line maximum loadability of radial distribution system (RDS) with different realistic load models at different substation voltages. The proposed method involves a simple line loadability index (LLI) that gives a measure of the proximity of the present state of a line in the distribution system. The LLI can use to assess voltage instability and the line loading margin. The proposed method also compares with the existing method of maximum loadability index [10]. The simulation results show that the LLI can identify not only the weakest line/branch causing system instability but also the system voltage collapse point when it is near one. This feature enables us to set an index threshold to monitor and predict system stability on-line so that a proper action can be taken to prevent the system from collapse. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on two bus and 69 bus RDS.

Keywords: line loadability index, line loading margin, maximum line loadability, system stability, radial distribution system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
542 Progressive Loading Effect of Co over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane

Authors: Sushil Kumar Saraswat, K. K. Pant

Abstract:

Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to COx free hydrogen and carbon nanomaterials. The catalytic runs were carried out from 550-800oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, XRD, SEM, TEM and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity at 800oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs and branched CNFs depending on the catalyst composition and reaction temperature were obtained.

Keywords: Carbon nanotubes, Cobalt, Hydrogen Production, Methane decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773
541 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
540 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: Polycaprolactone, organoclay, nanocomposite, montmorillonite, electrical conductivity, activation energy, exfoliation, intercalation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
539 Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae

Authors: Manatchanok Tantiphiphatthana, Lin Peng, Rujira Jitrwung, Kunio Yoshikawa

Abstract:

Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery.

Keywords: Bio-oil, Hydrothermal Liquefaction, Microalgae, Aqueous co-product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
538 Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

When the characteristic length of an elastic solid is down to the nanometer level, its deformation behavior becomes size dependent. Surface energy /surface stress have recently been applied to explain such dependency. In this paper, the effect of strain-independent surface stress on the deformation of an isotropic elastic solid containing a nanosized elliptical hole is studied by the finite element method. Two loading cases are considered, in the first case, hoop stress along the rim of the elliptical hole induced by pure surface stress is studied, in the second case, hoop stress around the elliptical opening under combined remote tension and surface stress is investigated. It has been shown that positive surface stress induces compressive hoop stress along the hole, and negative surface stress has opposite effect, maximum hoop stress occurs near the major semi-axes of the ellipse. Under combined loading of remote tension and surface stress, stress concentration around the hole can be either intensified or weakened depending on the sign of the surface stress.

Keywords: Surface stress, finite element method, stress concentration, nanosized elliptical hole

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
537 Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites

Authors: Srinivasa C. V., Bharath K. N.

Abstract:

Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.

Keywords: Lignocellulosic Fibers Composites, Areca Fibers, Alkali Treatment, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3743
536 Screening of Factors Affecting the Enzymatic Hydrolysis of Empty Fruit Bunches in Aqueous Ionic Liquid and Locally Produced Cellulase System

Authors: Md. Z. Alam, Amal A. Elgharbawy, Muhammad Moniruzzaman, Nassereldeen A. Kabbashi, Parveen Jamal

Abstract:

The enzymatic hydrolysis of lignocellulosic biomass is one of the obstacles in the process of sugar production, due to the presence of lignin that protects the cellulose molecules against cellulases. Although the pretreatment of lignocellulose in ionic liquid (IL) system has been receiving a lot of interest; however, it requires IL removal with an anti-solvent in order to proceed with the enzymatic hydrolysis. At this point, introducing a compatible cellulase enzyme seems more efficient in this process. A cellulase enzyme that was produced by Trichoderma reesei on palm kernel cake (PKC) exhibited a promising stability in several ILs. The enzyme called PKC-Cel was tested for its optimum pH and temperature as well as its molecular weight. One among evaluated ILs, 1,3-diethylimidazolium dimethyl phosphate [DEMIM] DMP was applied in this study. Evaluation of six factors was executed in Stat-Ease Design Expert V.9, definitive screening design, which are IL/ buffer ratio, temperature, hydrolysis retention time, biomass loading, cellulase loading and empty fruit bunches (EFB) particle size. According to the obtained data, IL-enzyme system shows the highest sugar concentration at 70 °C, 27 hours, 10% IL-buffer, 35% biomass loading, 60 Units/g cellulase and 200 μm particle size. As concluded from the obtained data, not only the PKC-Cel was stable in the presence of the IL, also it was actually stable at a higher temperature than its optimum one. The reducing sugar obtained was 53.468±4.58 g/L which was equivalent to 0.3055 g reducing sugar/g EFB. This approach opens an insight for more studies in order to understand the actual effect of ILs on cellulases and their interactions in the aqueous system. It could also benefit in an efficient production of bioethanol from lignocellulosic biomass.

Keywords: Cellulase, hydrolysis, lignocellulose, pretreatment, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
535 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life

Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan

Abstract:

The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.

Keywords: Fatigue life, finite element analysis, tolerance analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
534 Numerical Analysis and Experimental Validation of a Downhole Stress/Strain Measurement Tool

Authors: Abhay Bodake, Ping Sui, Hafeez Syed, Ratish Kadam

Abstract:

Real-time measurement of applied forces, like tension, compression, torsion, and bending moment, identifies the transferred energies being applied to the bottomhole assembly (BHA). These forces are highly detrimental to measurement/logging-while-drilling tools and downhole equipment. Real-time measurement of the dynamic downhole behavior, including weight, torque, bending on bit, and vibration, establishes a real-time feedback loop between the downhole drilling system and drilling team at the surface. This paper describes the numerical analysis of the strain data acquired by the measurement tool at different locations on the strain pockets. The strain values obtained by FEA for various loading conditions (tension, compression, torque, and bending moment) are compared against experimental results obtained from an identical experimental setup. Numerical analyses results agree with experimental data within 8% and, therefore, substantiate and validate the FEA model. This FEA model can be used to analyze the combined loading conditions that reflect the actual drilling environment.

Keywords: FEA, M/LWD, Oil & Gas, Strain Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537