Search results for: critical transformation temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4198

Search results for: critical transformation temperature

3988 A Practice of Zero Trust Architecture in Financial Transactions

Authors: L. Wang, Y. Chen, T. Wu, S. Hu

Abstract:

In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for the cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces Software Defined Perimeter (SDP) technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access and significantly improves the security protection capability of Internet transactions. The study achieves: 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading, and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.

Keywords: Zero trust, trading terminal, architecture, network security, cybersecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122
3987 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: Broken bar, condition monitoring, diagnostics, empirical mode decomposition, Fourier transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
3986 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations

Authors: Javad Abdalkhani

Abstract:

Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..

Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
3985 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

Authors: Kai-Long Hsiao

Abstract:

A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.

Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
3984 Novel Intrinsic Conducting Polymer Current Limiting Device (CLD) for Surge Protection

Authors: Noor H Jabarullah

Abstract:

In the past many uneconomic solutions for limitation and interruption of short-circuit currents in low power applications have been introduced, especially polymer switch based on the positive temperature coefficient of resistance (PCTR) concept. However there are many limitations in the active material, which consists of conductive fillers. This paper presents a significantly improved and simplified approach that replaces the existing current limiters with faster switching elements. Its elegance lies in the remarkable simplicity and low-cost processes of producing the device using polyaniline (PANI) doped with methane-sulfonic acid (MSA). Samples characterized as lying in the metallic and critical regimes of metal insulator transition have been studied by means of electrical performance in the voltage range from 1V to 5 V under different environmental conditions. Moisture presence is shown to increase the resistivity and also improved its current limiting performance. Additionally, the device has also been studied for electrical resistivity in the temperature range 77 K-300 K. The temperature dependence of the electrical conductivity gives evidence for a transport mechanism based on variable range hopping in three dimensions.

Keywords: Conducting polymer, current limiter, intrinsic, moisture dependence, polyaniline, resettable, surge protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
3983 A Framework on the Critical Success Factors of E-Learning Implementation in Higher Education: A Review of the Literature

Authors: Sujit K. Basak, Marguerite Wotto, Paul Bélanger

Abstract:

This paper presents a conceptual framework on the critical success factors of e-learning implementation in higher education, derived from an in-depth survey of literature review. The aim of this study was achieved by identifying critical success factors that affect for the successful implementation of e-learning. The findings help to articulate issues that are related to e-learning implementation in both formal and non-formal higher education and in this way contribute to the development of programs designed to address the relevant issues.

Keywords: Critical success factors, e-learning, higher education, life-long learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3825
3982 Role and Effect of Temperature on LPG Sweetening Process

Authors: Ali Samadi Afshar, Sayed Reaza Hashemi

Abstract:

In the gas refineries of Iran-s South Pars Gas Complex, Sulfrex demercaptanization process is used to remove volatile and corrosive mercaptans from liquefied petroleum gases by caustic solution. This process consists of two steps. Removing low molecular weight mercaptans and regeneration exhaust caustic. Some parameters such as LPG feed temperature, caustic concentration and feed-s mercaptan in extraction step and sodium mercaptide content in caustic, catalyst concentration, caustic temperature, air injection rate in regeneration step are effective factors. In this paper was focused on temperature factor that play key role in mercaptans extraction and caustic regeneration. The experimental results demonstrated by optimization of temperature, sodium mercaptide content in caustic because of good oxidation minimized and sulfur impurities in product reduced.

Keywords: Caustic regeneration, demercaptanization, LPG sweetening, mercaptan extraction, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5917
3981 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation

Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya

Abstract:

Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.

Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
3980 Long Term Variability of Temperature in Armenia in the Context of Climate Change

Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim

Abstract:

The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961- 2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5°C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.

Keywords: Air temperature, long-term variability, trend, climate change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
3979 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

Authors: Shengqi Yu, Jinwei Zhao

Abstract:

This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.

Keywords: Time base circuit, automatic control, zero-crossing trigger, temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
3978 Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment

Authors: Gulshan Taj M. N. A., Anupam Chakrabarti, Vipul Prakash

Abstract:

In the present investigation, free vibration of functionally graded material (FGM) skew plates under thermal environment is studied. Kinematics equations are based on the Reddy’s higher order shear deformation theory and a nine noded isoparametric Lagrangian element is adopted to mesh the plate geometry. The issue of C1 continuity requirement related to the assumed displacement field has been circumvented effectively to develop C0 finite element formulation. Effective mechanical properties of the constituents of the plate are considered to be as position and temperature dependent and assumed to vary in the thickness direction according to a simple power law distribution. The displacement components of a rectangular plate are mapped into skew plate geometry by means of suitable transformation rule. One dimensional Fourier heat conduction equation is used to ascertain the temperature profile of the plate along thickness direction. Influence of different parameters such as volume fraction index, boundary condition, aspect ratio, thickness ratio and temperature field on frequency parameter of the FGM skew plate is demonstrated by performing various examples and the related findings are discussed briefly. New results are generated for vibration of the FGM skew plate under thermal environment, for the first time, which may be implemented in the future research involving similar kind of problems.

Keywords: Functionally graded material, finite element method, higher order shear deformation theory, skew plate, thermal vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3553
3977 Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures

Authors: A. A. Amer, H. M. Gad, I. A. Ibrahim, S. I. Abdel-Mageed, T. M. Farag

Abstract:

This paper represents an experimental study of LPG diffusion flame at elevated preheated air temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Five air to fuel mass ratios of 15, 20, 30, 40 and 50 were also studied. The effect of preheated air temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the preheated air temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the preheated air temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the preheated air temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.

Keywords: Preheated air temperature, air swirler, flame length, emission index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
3976 High-Temperature Corrosion of Weldment of Fe-2%Mn-0.5%Si Steel in N2/H2O/H2S-Mixed Gas

Authors: Sang Hwan Bak, Min Jung Kim, Dong Bok Lee

Abstract:

Fe-2%Mn-0.5%Si-0.2C steel was welded and corroded at 600, 700 and 800oC for 20 h in 1 atm of N2/H2S/H2O-mixed gas in order to characterize the high-temperature corrosion behavior of the welded joint. Corrosion proceeded fast and almost linearly. It increased with an increase in the corrosion temperature. H2S formed FeS owing to sulfur released from H2S. The scales were fragile and nonadherent.

Keywords: Fe-Mn-Si Steel, Corrosion, Welding, Sulfidation, H2S Gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
3975 Time Independent Behavior of Tomato Paste

Authors: A. Heidarinasab, V. Moghaddam Nansa

Abstract:

This paper deals with rheological behavior of tomato paste from the view point of time independent properties inclusive of processing variables such as sample temperature which influence on rheological properties as well as breaking temperature and concentration which beside the rheological properties, influence on the quality of final product. With this aim 10 tomato paste samples at various concentrations (17-25%) and breaking temperatures (65- 85 C o ) have been produced. The experimental results showed tomato paste behaves as a non-Newtonian semi-fluid which follows power law model that consistency coefficient (K) is supposed function of breaking temperature, concentration and sample temperature with consideration to superimpose function.

Keywords: Breaking temperature, Concentration, Power law, Rheology, Time independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3328
3974 Prediction of the Rear Fuselage Temperature with Radiation Shield

Authors: Kyung Joo Yi, Seung Wook Baek, Sung Nam Lee, Man Young Kim, Won Cheol Kim, Gun Yung Go

Abstract:

In order to enhance the aircraft survivability, the infrared signatures emitted by hot engine parts should be determined exactly. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer characteristics of an aircraft nozzle is performed and its temperature distribution along each component wall is predicted. The radiation shield is expected to reduce the skin temperature of rear fuselage. The effect of material characteristic of radiation shield on the heat transfer is also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.

Keywords: Infrared signature, Nozzle flow, Radiation shield, Rear fuselage temperature, Susceptibility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
3973 An Experimental Study on Autoignition of Wood

Authors: Tri Poespowati

Abstract:

Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.

Keywords: Fire properties, moisture content, wood, charring rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
3972 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
3971 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load

Authors: M. Khoukhi

Abstract:

Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.

Keywords: Operating temperature, polystyrene insulation, thermal conductivity, cooling load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
3970 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow

Authors: Vai Kuong Sin

Abstract:

Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.

Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
3969 Demulsification of Water-in-Oil Emulsions by Microwave Heating Technology

Authors: Abdurahman H. Nour, Rosli M. Yunus, Azhary. H. Nour

Abstract:

The mechanism of microwave heating is essentially that of dielectric heating. After exposing the emulsion to the microwave Electromagnetic (EM) field, molecular rotation and ionic conduction due to the penetration of (EM) into the emulsion are responsible for the internal heating. To determine the capability of microwave technology in demulsification of crude oil emulsions, microwave demulsification method was applied in a 50-50 % and 20- 80 % water-in-oil emulsions with microwave exposure time varied from 20-180 sec. Transient temperature profiles of water-in-oil emulsions inside a cylindrical container were measured. The temperature rise at a given location was almost horizontal (linear). The average rates of temperature increase of 50-50 % and 20-80 % water-in-oil emulsions are 0.351 and 0.437 oC/sec, respectively. The rate of temperature increase of emulsions decreased at higher temperature due to decreasing dielectric loss of water. These results indicate that microwave demulsification of water-in-oil emulsions does not require chemical additions. Microwave has the potential to be used as an alternative way in the demulsification process.

Keywords: Demulsification, temperature profile, emulsion.Microwave heating, dielectric, volume rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671
3968 Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel

Authors: J. Ptačinová, J. Ďurica, P. Jurči, M Kusý

Abstract:

Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 °C and -196 °C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides – eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount – this is more effective at -196 °C than at -140 °C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 °C than after the treatment at -140 °C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak.

Keywords: Microstructure, Vanadis 6 tool steel, sub-zero treatment, carbides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
3967 Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features

Authors: Steven Whittle, Ingrida Valiusaityte

Abstract:

Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.

Keywords: Complex Systems, Critical Design Features, Property Aggregation, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
3966 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
3965 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System

Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga

Abstract:

This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.

Keywords: Critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3964 Study of Currents and Temperature of Induced Spur Gear using 2d Simulation

Authors: N. Barka, P. Bocher, A. Chebak, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of induced currents and temperature distribution in gear heated by induction process using 2D finite element (FE) model. The model is developed by coupling Maxwell and heat transfer equations into a multi-physics model. The obtained results allow comparing the medium frequency (MF) and high frequency (HF) cases and the effect of machine parameters on the evolution of induced currents and temperature during heating. The sensitivity study of the temperature profile is conducted and the case hardness is predicted using the final temperature profile. These results are validated using tests and give a good understanding of phenomena during heating process.

Keywords: 2D model, induction heating, spur gear, induced currents, experimental validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
3963 Transient Heat Transfer of a Spiral Fin

Authors: Sen-Yung Lee, Li-Kuo Chou, Chao-Kuang Chen

Abstract:

In this study, the problem of temperature transient response of a spiral fin, with its end insulated, is analyzed with base end subjected to a variation of fluid temperature. The hybrid method of Laplace transforms/Adomian decomposed method-Padé, is applied to the temperature transient response of the fin, the result of the temperature distribution and the heat flux at the base of the spiral fin are obtained, show a good agreement in the physical phenomenon.

Keywords: Laplace transforms/Adomian decomposed method- Padé, transient response, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
3962 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: Activation parameters, creep mechanisms, high strength steels, low temperature creep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
3961 Simulation of Climate Variability for Assessing Impacts on Yield and Genetic Change of Thai Soybean

Authors: Kanita Thanacharoenchanaphas, Orose Rugchati

Abstract:

This study assessed the effects of climate change on Thai soybeans under simulation situations. Our study is focused on temperature variability and effects on growth, yield, and genetic changes in 2 generations of Chiang Mai 60 cultivars. In the experiment, soybeans were exposed to 3 levels of air temperature for 8 h day-1 in an open top chamber for 2 cropping periods. Air temperature levels in each treatment were controlled at 30-33°C (± 2.3) for LT-treatment, 33-36°C ( ± 2.4) for AT-treatment, and 36-40 °C ( ± 3.2) for HT-treatment, respectively. Positive effects of high temperature became obvious at the maturing stage when yield significantly increased in both cropping periods. Results in growth indicated that shoot length at the pre-maturing stage (V3-R3) was more positively affected by high temperature than at the maturing stage. However, the positive effect on growth under high temperature was not found in the 2nd cropping period. Finally, genetic changes were examined in phenotype characteristics by the AFLPs technique. The results showed that the high temperature factor clearly caused genetic change in the soybeans and showed more alteration in the 2nd cropping period.

Keywords: simulation, air temperature, variability, Thai soybean, yield , genetic change

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
3960 A Study on Energy-efficient Temperature Control

Authors: Mitsuyuki Kawakami, Kimihiro Yamanaka

Abstract:

The top-heavy demographic of low birth-rate and longer lifespan is a growing social problem, and one of its expected effects will be a shortage of young workers and a growing reliance on a workforce of middle-aged and older people. However, the environment of today's industrial workplace is not particularly suited to middle-aged and older workers, one notable problem being temperature control. Higher temperatures can cause health problems such as heat stroke, and the number of cases increases sharply in people over 65. Moreover, in conditions above 33°C, older people can develop circulatory system disorders, and also have a higher chance of suffering a fatal heart attack. We therefore propose a new method for controlling temperature in the indoor workplace. In this study two different verification experiments were conducted, with the proposed temperature control method being tested in cargo containers and conventional houses. The method's effectiveness was apparent in measurements of temperature and electricity consumption

Keywords: CO2 reduction, Energy saving, Temperature control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
3959 The Study of Increasing Environmental Temperature on the Dynamical Behaviour of a Prey-Predator System: A Model

Authors: O. P. Misra, Preety Kalra

Abstract:

It is well recognized that the green house gases such as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible directly or indirectly for the increase in the average global temperature of the Earth. The presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to which the heat accompanied with the sun rays are less absorbed causing increase in the atmospheric temperature of the Earth. The gases like CH4 and CO2 are also responsible for the increase in the atmospheric temperature. The increase in the temperature level directly or indirectly affects the dynamics of interacting species systems. Therefore, in this paper a mathematical model is proposed and analysed using stability theory to asses the effects of increasing temperature due to greenhouse gases on the survival or extinction of populations in a prey-predator system. A threshold value in terms of a stress parameter is obtained which determines the extinction or existence of populations in the underlying system.

Keywords: Equilibria, Green house gases, Model, Populations, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478