Search results for: active suspension.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1034

Search results for: active suspension.

914 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
913 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – A Case Study of Leeds and Makkah

Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji

Abstract:

In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and suppress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.

Keywords: Air pollution, climatic conditions, particulate matter, Makkah, Leeds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
912 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

Authors: Sidhartha Panda, N.P.Padhy

Abstract:

Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
911 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
910 Some Aspects Regarding I. R. Absorbing Materials Based On Thin Alumina Films for Solar-Thermal Energy Conversion, Using X-Ray Diffraction Technique

Authors: Sorina Adriana Mitrea, Silvia Maria Hodorogea, Anca Duta, Luminita Isac, Elena Purghel, Mihaela Voinea

Abstract:

Solar energy is the most “available", ecological and clean energy. This energy can be used in active or passive mode. The active mode implies the transformation of solar energy into a useful energy. The solar energy can be transformed into thermal energy, using solar collectors. In these collectors, the active and the most important element is the absorber, material which performs the absorption of solar radiation and, in at the same time, limits its reflection. The paper presents some aspects regarding the IR absorbing material – a type of cermets, used as absorber in the solar collectors, by X Ray Diffraction Technique (XRD) characterization.

Keywords: Alumina films, solar energy, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
909 ZVZCT PWM Boost DC-DC Converter

Authors: İsmail Aksoy, Hacı Bodur, Nihan Altıntas

Abstract:

This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.

Keywords: Active snubber cell, boost converter, zero current switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
908 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency

Authors: Shao-Ku Kao

Abstract:

This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.

Keywords: Wireless power transfer, active diode, delay compensation, time to voltage converter, PCE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
907 Modeling and Design of an Active Leg Orthosis for Tumble Protection

Authors: Eileen Chih-Ying Yang, Liang-Han Wu, Chieh-Min Chang

Abstract:

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Keywords: Active leg orthosis, Tumble protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
906 Harmonic Pollution Control of the Electrical Network by Three-Phase Shunt Active Filter: Comparative Study of Controls, by Hysteresis and by Duty Cycle Modulation

Authors: T. Patrice Nna Nna, S. Ndjakomo Essiane, S. Pérabi Ngoffé, F. Amigue Fissou

Abstract:

This paper deals with the harmonic decontamination of current in an electrical grid by an active shunt filter in order to improve power quality. The contribution of this paper is mainly based on the proposal of a control strategy for an active filter based on Duty Cycle Modulation (DCM). First, three-monophase method is applied for the identification of disturbing currents. A Simulink model of this method is given for one phase of the grid. Secondly, two orders were designed: the first one is the Hysteresis Control and the second one is the DCM Control. Finally, a comparative study of the two controls was performed. The results obtained show a significant improvement in the rate of harmonic distortion for both controls. The harmonic distortion for the Hysteresis control is limited by the non-controllability of the switching frequencies of the inverter's switches and reduces the harmonic distortion rate (THD) to 3.12% as opposed to the DCM control which limits the THD to 2.82% which makes it better.

Keywords: Harmonic pollution, shunt active filter, hysteresis, Duty Cycle Modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
905 Contributions to Design of Systems Actuated by Shape Memory Active Elements

Authors: Daniel Amariei, Calin O. Miclosina, Ion Vela, Marius Tufoi, Cornel Mituletu

Abstract:

Even it has been recognized that Shape Memory Alloys (SMA) have a significant potential for deployment actuators, the number of applications of SMA-based actuators to the present day is still quite small, due to the need of deep understanding of the thermo-mechanical behavior of SMA, causing an important need for a mathematical model able to describe all thermo-mechanical properties of SMA by relatively simple final set of constitutive equations. SMAs offer attractive potentials such as: reversible strains of several percent, generation of high recovery stresses and high power / weight ratios. The paper tries to provide an overview of the shape memory functions and a presentation of the designed and developed temperature control system used for a gripper actuated by two pairs of differential SMA active springs. An experimental setup was established, using electrical energy for actuator-s springs heating process. As for holding the temperature of the SMA springs at certain level for a long time was developed a control system in order to avoid the active elements overheating.

Keywords: active element, actuator, model, Nitinol, prehension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
904 Power Reduction by Automatic Monitoring and Control System in Active Mode

Authors: Somaye Abdollahi Pour, Mohsen Saneei

Abstract:

This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.

Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
903 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems

Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu

Abstract:

The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.

Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961
902 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: Unmanned aerial vehicles, morphing, autopilots, autonomous performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
901 Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter

Authors: Dipen A. Mistry, Bhupelly Dheeraj, Ravit Gautam, Manmohan Singh Meena, Suresh Mikkili

Abstract:

In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.

Keywords: DC link voltage, Fuzzy logic controller, Harmonics, PI controller, Shunt Active Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072
900 Effectiveness of Cellular Phone with Active RFID Tag for Evacuation - The Case of Evacuation from the Underground Shopping Mall of Tenjin

Authors: Masatora Daito, Noriyuki Tanida

Abstract:

The underground shopping mall has the constructional problem of the fire evacuation. Also, the people sometimes lose their direction and information of current time in the mall. If the emergencies such as terrorist explosions or gas explosions are happened, they have to go out soon. Under such circumstances, inside of the mall has high risk for life. In this research, the authors propose a way that he/she can go out from the underground shopping mall quickly. If the narrow exits are discovered by using active RFID (Radio Frequency Identification) tags and using cellular phones, they can evacuate as soon as possible. To verify this hypothesis, the authors design the model and carry out the agent-based simulation. They treat, as a case study, the Tenjin mall in Fukuoka Prefecture in Japan. The result of the simulation is that the case of the pedestrian with using active RFID tags and cellular phones reduced the amount of time to spend on the evacuation. Even if the diffusion of RFID tags and cellular phones was not perfect, they could show the effectiveness of reducing the time of evacuation.

Keywords: Evacuation, active RFID tag and cellular phone, underground shopping mall, agent-based simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
899 Nonlinear Controller Design for Active Front Steering System

Authors: Iman Mousavinejad, Reza Kazemi, , Mohsen Bayani Khaknejad

Abstract:

Active Front Steering system (AFS) provides an electronically controlled superposition of an angle to the steering wheel angle. This additional degree of freedom enables a continuous and driving-situation dependent on adaptation of the steering characteristics. In an active steering system, there needs be no fixed relationship between the steering wheel and the angle of the road wheels. Not only can the effective steering ratio be varied with speed, for example, but also the road wheel angles can be controlled by a combination of driver and computer inputs. Features like steering comfort, effort and steering dynamics are optimized and stabilizing steering interventions can be performed. In contrast to the conventional stability control, the yaw rate was fed back to AFS controller and the stability performance was optimized with Sliding Mode control (SMC) method. In addition, tire uncertainties have been taken into account in SM controller to provide the control robustness. In this paper, 3-DOF nonlinear model is used to design the AFS controller and 8-DOF nonlinear model is used to model the controlled vehicle.

Keywords: Active Front Steering (AFS), Sliding Mode Control method (SMC), Yaw rate, Vehicle Stability, Robustness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3285
898 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System

Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour

Abstract:

This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.

Keywords: Adaptive control, active steering, pole placement, vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
897 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper

Authors: H. Juma, F. Al-hujaili, R. Kashani

Abstract:

Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.

Keywords: Tuned mass damper, air spring, semi-active, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
896 Variable Structure Model Reference Adaptive Control for Vehicle Steering System

Authors: Ardeshir Karami Mohammadi, Mohammadreza Saee

Abstract:

A variable structure model reference adaptive control (VS-MRAC) strategy for active steering assistance of a two wheel steering car is proposed. An ideal steering system with fixed properties and moving on an ideal road is used as the reference model, and the active steering assistance system is forced to attain the same behavior as the reference model. The proposed system can treat the nonlinear relationships between the side slip angles and lateral forces on tire, and the uncertainties on friction of the road surface, whose compensation are very important under critical situations. Simulation results show improvements on yaw rate and side slip.

Keywords: Variable Structure, Adaptive Control, Model reference, Active steering assistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
895 A Literature Survey of Neural Network Applications for Shunt Active Power Filters

Authors: S. Janpong, K-L. Areerak, K-N. Areerak

Abstract:

This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP).

Keywords: Active power filter, neural network, harmonic distortion, harmonic detection and compensation, non-linear load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
894 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique

Authors: V. Sandeep Kumar, S. Anuradha

Abstract:

The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.

Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
893 Turbine Speed Variation Study in Gas Power Plant for an Active Generator

Authors: R. Kazemzadeh, J. M. Kauffmann

Abstract:

This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.

Keywords: Power Generation, Energy Conversion, FrequencyControl, Matrix Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
892 Grid-HPA: Predicting Resource Requirements of a Job in the Grid Computing Environment

Authors: M. Bohlouli, M. Analoui

Abstract:

For complete support of Quality of Service, it is better that environment itself predicts resource requirements of a job by using special methods in the Grid computing. The exact and correct prediction causes exact matching of required resources with available resources. After the execution of each job, the used resources will be saved in the active database named "History". At first some of the attributes will be exploit from the main job and according to a defined similarity algorithm the most similar executed job will be exploited from "History" using statistic terms such as linear regression or average, resource requirements will be predicted. The new idea in this research is based on active database and centralized history maintenance. Implementation and testing of the proposed architecture results in accuracy percentage of 96.68% to predict CPU usage of jobs and 91.29% of memory usage and 89.80% of the band width usage.

Keywords: Active Database, Grid Computing, ResourceRequirement Prediction, Scheduling,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
891 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter

Authors: K. G. Firouzjah, A. Sheikholeslami

Abstract:

The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.

Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
890 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
889 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
888 Constraint Active Contour Model with Application to Automated Three-Dimensional Airway Wall Segmentation

Authors: Kuo-Lung Lor, Chi-Hsuan Tsou, Yeun-Chung Chang, Chung-Ming Chen

Abstract:

For evaluating the severity of Chronic Obstructive Pulmonary Disease (COPD), one is interested in inspecting the airway wall thickening due to inflammation. Although airway segmentations have being well developed to reconstruct in high order, airway wall segmentation remains a challenge task. While tackling such problem as a multi-surface segmentation, the interrelation within surfaces needs to be considered. We propose a new method for three-dimensional airway wall segmentation using spring structural active contour model. The method incorporates the gravitational field of the image and repelling force field of the inner lumen as the soft constraint and the geometric spring structure of active contour as the hard constraint to approximate a three-dimensional coupled surface readily for thickness measurements. The results show the preservation of topology constraints of coupled surfaces. In conclusion, our springy, soft-tissue-like structure ensures the globally optimal solution and waives the shortness following by the inevitable improper inner surface constraint.

Keywords: active contour model, airway wall, COPD, geometric spring structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
887 Chattering-free Sliding Mode Control for an Active Magnetic Bearing System

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd Yatim

Abstract:

In this paper, a few chattering-free Sliding Mode Controllers (SMC) are proposed to stabilize an Active Magnetic Bearing (AMB) system with gyroscopic effect that is proportional to the rotor speed. The improved switching terms of the controller inherited from the saturation-type function and boundary layer control technique is shown to be able to achieve bounded and asymptotic stability, respectively, while the chattering effect in the input is attenuated. This is proven to be advantageous for AMB system since minimization of chattering results in optimized control effort. The performance of each controller is demonstrated via result of simulation in which the measurement of the total consumed energy and maximum control magnitude of each controller illustrates the effectiveness of the proposed controllers.

Keywords: Active Magnetic Bearing (AMB), Sliding Mode Control (SMC), chattering-free SMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
886 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: Electrical conductivity, electrophoretic deposition, p-type Bi2Te3, thermoelectric materials, thick films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
885 Control Algorithm for Shunt Active Power Filter using Synchronous Reference Frame Theory

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa,

Abstract:

This paper presents a method for obtaining the desired reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) using Synchronous Reference Frame Theory. The method relies on the performance of the Proportional-Integral (PI) controller for obtaining the best control performance of the SAPF. To improve the performance of the PI controller, the feedback path to the integral term is introduced to compensate the winding up phenomenon due to integrator. Using Reference Frame Transformation, reference signals are transformed from a - b - c stationery frame to 0 - d - q rotating frame. Using the PI controller, the reference signals in the 0 - d - q rotating frame are controlled to get the desired reference signals for the Pulse Width Modulation. The synchronizer, the Phase Locked Loop (PLL) with PI filter is used for synchronization, with much emphasis on minimizing delays. The system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage Source Converter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse Width Modulation (PWM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3506