Search results for: Zafer Bingül
5 Feasibility Study of Friction Stir Welding Application for Kevlar Material
Authors: Ahmet Taşan, Süha Tirkeş, Yavuz Öztürk, Zafer Bingül
Abstract:
Friction stir welding (FSW) is a joining process in the solid state, which eliminates problems associated with the material melting and solidification, such as cracks, residual stresses and distortions generated during conventional welding. Among the most important advantages of FSW are; easy automation, less distortion, lower residual stress and good mechanical properties in the joining region. FSW is a recent approach to metal joining and although originally intended for aluminum alloys, it is investigated in a variety of metallic materials. The basic concept of FSW is a rotating tool, made of non-consumable material, specially designed with a geometry consisting of a pin and a recess (shoulder). This tool is inserted as spinning on its axis at the adjoining edges of two sheets or plates to be joined and then it travels along the joining path line. The tool rotation axis defines an angle of inclination with which the components to be welded. This angle is used for receiving the material to be processed at the tool base and to promote the gradual forge effect imposed by the shoulder during the passage of the tool. This prevents the material plastic flow at the tool lateral, ensuring weld closure on the back of the pin. In this study, two 4 mm Kevlar® plates which were produced with the Kevlar® fabrics, are analyzed with COMSOL Multiphysics in order to investigate the weldability via FSW. Thereafter, some experimental investigation is done with an appropriate workbench in order to compare them with the analysis results.
Keywords: Analytical modeling, composite materials welding, friction stir welding, heat generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11114 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition
Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram
Abstract:
In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.Keywords: Charge carrier diffusion lengths, methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16773 Swelling Behavior and Cytotoxicity of Maleic Acid Grafted Chitosan
Authors: Sevil Yucel, Zafer Omer Ozdemir, Cem Kesgin, Pinar Terzioglu, Simten Unlu, Yagmur Erdogan, Kubra Pusat
Abstract:
Chitosan is an attractive polysaccharide obtained by deacetylation of an abundant natural biopolymer called chitin. Chitin and chitosan are excellent materials. To improve the potential of chitin and chitosan modification is needed. In the present study, grafting of maleic acid on to chitosan by cerium ammonium nitrate in acetic acid solution was investigated with use of a microwave and reflux system. The grafted chitosan was characterized by using a Fourier-transform infrared spectrometry. The solubility and swelling behavior of grafted chitosans were determined in acetate buffer (pH 3.6), citrophosphate buffer (pH 5.6 and pH 7.0), and boric buffer (pH 9.2) solutions. The sample obtained by microwave system with use of a chitosan/maleic anhydride/ceric ammonium nitrate 0.2/3.922/0.99 gram of raw material within 30 minute showed the maximum swelling ratio (13.6) in boric buffer solution.Keywords: Chitosan, cytotoxicity, grafted, maleic acid, swell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24462 Investigation of Proximate Value, Sensorial Evaluation, Flesh Yield of Shrimp (Parapenaus longirostris) (Lucas, 1846) between Populations in the Marmara and Northern Aegean Sea
Authors: Zafer Ceylan, Gülgün F. Unal Sengor, Onur Gönülal
Abstract:
The differences on proximate composition, sensorial analysis (for raw and cooked samples) and flesh productivity of the samples of Parapenaus longirostris that were caught in the North Aegean Sea and Marmara Sea were investigated. Moisture, protein, lipid, ash, carbohydrate, energy content of the North Aegean Sea shrimp were found 74.92 ± 0.1, 20.32 ± 0.16, 2.55 ± 0.1, 2.13 ± 0.08, 0.08%, 110.1 kcal/100 g, respectively. On the other hand, the Marmara Sea shrimp was found 76.9 ± 0.02, 19.06 ± 0.03, 2.22 ± 0.08, 1.51 ± 0.04, 0.33, 102.77 kcal/100g, respectively. Protein, lipid, ash and energy values of the Northern Aegean Sea shrimp were higher than the Marmara Sea shrimp. On the other hand, moisture, carbohydrate values of the Northern Aegean Sea shrimp were lower than the Marmara samples. Sensorial analyses were carried on for raw and cooked samples. Among all properties for raw samples, flesh color, shrimp connective tissue, shrimp body parameters were different from each other according to the result of the panel. According to the result of the cooked shrimp samples among all properties, cooked odour, flavor and texture were different from each other as well. Especially, flavor and textural properties of cooked shrimps of the Northern Aegean Sea were higher than the Marmara Sea shrimp. The flesh yield of the Northern Aegean Sea shrimp was found 46.42%, while Marmara Sea shrimp was found 47.74%.
Keywords: Proximate value, sensorial evaluation, Parapenaus longirostris flesh yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20771 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software
Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven
Abstract:
Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.
Keywords: Aeroacoustics, Ffowcs-Williams and Hawkings equations, SST k-ω turbulence model, Noise Disturbance, 3D Blade Profile, 2D Blade Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860