Search results for: Yael Dubinsky
4 Advancing the Hi-Tech Ecosystem in the Periphery: The Case of the Sea of Galilee Region
Authors: Yael Dubinsky, Orit Hazzan
Abstract:
There is a constant need for hi-tech innovation to be decentralized to peripheral regions. This work describes how we applied Design Science Research (DSR) principles to define what we refer to as the Sea of Galilee (SoG) method. The goal of the SoG method is to harness existing and new technological initiatives in peripheral regions to create a socio-technological network that can initiate and maintain hi-tech activities. The SoG method consists of a set of principles, a stakeholder network, and actual hi-tech business initiatives, including their infrastructure and practices. The three cycles of DSR, the Relevance, Design, and Rigor cycles, lay out a research framework to sharpen the requirements, collect data from case studies, and iteratively refine the SoG method based on the existing knowledge base. We propose that the SoG method can be deployed by regional authorities that wish to be considered as smart regions (an extension of the notion of smart cities).
Keywords: Design Science Research, socio-technological initiatives, Sea of Galilee method, periphery stakeholder network, hi-tech initiatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213 The Effect of Education Level on Psychological Empowerment and Burnout-The Mediating Role of Workplace Learning Behaviors
Authors: Sarit Rashkovits, Yael Livne
Abstract:
The study investigates the relationship between education level, workplace learning behaviors, psychological empowerment and burnout in a sample of 191 teachers. We hypothesized that education level will positively affect psychological state of increased empowerment and decreased burnout, and we purposed that these effects will be mediated by workplace learning behaviors. We used multiple regression analyses to test the model that included also the 6 following control variables: The teachers' age, gender, and teaching tenure; the schools' religious level, the pupils' needs: regular/ special needs, and the class level: elementary/ high school. The results support the purposed mediating model.Keywords: Education level, Learning behaviors, Psychological empowerment, Burnout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27372 A Cognitive Robot Collaborative Reinforcement Learning Algorithm
Authors: Amit Gil, Helman Stern, Yael Edan
Abstract:
A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.Keywords: Robot learning, human-robot collaboration, motion planning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: Agricultural engineering, computer vision, image processing, flower detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367