Search results for: Wissam B. Fahed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Wissam B. Fahed

2 The Effect of Entrepreneurship on Foreign Direct Investment

Authors: Wissam B. Fahed

Abstract:

Entrepreneurship has become an important and extensively researched concept in business studies. Research on foreign direct investment (FDI) has become widespread due to the growth of FDI and its importance in globalization. Most entrepreneurship studies examined the importance and influence of entrepreneurial orientation in a micro-level context. On the other hand, studies and research concerning FDI used statistical techniques to analyze the effect, determinants, and motives of FDI on a macroeconomic level, ignoring empirical studies on other noneconomic determinants. In order to bridge the gap between the theory and empirical evidence on FDI and the theory and research on entrepreneurship, this study examines the impact of entrepreneurship on inward foreign direct investment. The relationship between entrepreneurship and foreign direct investment is investigated through regression analysis of pooled time-series and cross-sectional data. The results suggest that entrepreneurship has a significant effect on FDI.

Keywords: Entrepreneurship, foreign direct investment, globalization, economic freedom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3886
1 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm

Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar

Abstract:

In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.

Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022