Search results for: Wilailak Siripornadulsil
2 Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food
Authors: Wilailak Siripornadulsil, Siriyanapat Tasaku, Jutamas Buahorm, Surasak Siripornadulsil
Abstract:
The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator&CaCO3 and Gram-positive, catalase- and oxidase-negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt & heat, proteolytic, amylolytic & lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 & MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 & SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.
Keywords: Lactic acid bacteria, pathogen, probiotic, protective culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38971 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste
Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil
Abstract:
Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulase enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulase to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulase producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulase activity. The optimal temperature for its growth and cellulase production is 37°C. The optimal temperature of bacterial cellulase activity is 60°C. The cellulase enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36h. showed highest cellulase activity at 120U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulase activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.
Keywords: Acinetobacter sp. KKU44, bagasse, cellulase enzyme, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684