Search results for: Tomato powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 302

Search results for: Tomato powder

2 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1 Chemistry and Biological Activity of Feed Additive for Poultry Farming

Authors: Malkhaz Jokhadze, Vakhtang Mshvildadze, Levan Makaradze, Ekaterine Mosidze, Salome Barbaqadze, Mariam Murtazashvili, Dali Berashvili, Koba sivsivadze, Lasha Bakuridze, Aliosha Bakuridze

Abstract:

Essential oils are one of the most important groups of biologically active substances present in plants. Due to the chemical diversity of components, essential oils and their preparations have a wide spectrum of pharmacological action. They have bactericidal, antiviral, fungicidal, antiprotozoal, anti-inflammatory, spasmolytic, sedative and other activities. They are expectorant, spasmolytic, sedative, hypotensive, secretion enhancing, antioxidant remedies. Based on preliminary pharmacological studies, we have developed a formulation called “Phytobiotic” containing essential oils, a feed additive for poultry as an alternative to antibiotics. Phytobiotic is a water-soluble powder containing a composition of essential oils of thyme, clary, monarda and auxiliary substances: dry extract of liquorice and inhalation lactose. On this stage of research, the goal was to study the chemical composition of provided phytobiotic, identify the main substances and determine their quantity, investigate the biological activity of phytobiotic through in vitro and in vivo studies. Using gas chromatography-mass spectrometry, 38 components were identified in phytobiotic, representing acyclic-, monocyclic-, bicyclic-, and sesquiterpenes. Together with identification of main active substances, their quantitative content was determined, including acyclic terpene alcohol β-linalool, acyclic terpene ketone linalyl acetate, monocyclic terpenes: D-limonene and γ-terpinene, monocyclic aromatic terpene thymol. Provided phytobiotic has pronounced and at the same time broad spectrum of antibacterial activity. In the cell model, phytobiotic showed weak antioxidant activity, and it was stronger in the ORAC (chemical model) tests. Meanwhile anti-inflammatory activity was also observed. When fowls were supplied feed enriched with phytobiotic, it was observed that gained weight of the chickens in the experimental group exceeded the same data for the control group during the entire period of the experiment. The survival rate of broilers in the experimental group during the growth period was 98% compared to -94% in the control group. As a result of conducted researches probable four different mechanisms which are important for the action of phytobiotics were identified: sensory, metabolic, antioxidant and antibacterial action. General toxic, possible local irritant and allergenic effects of phytobiotic were also investigated. Performed assays proved that formulation is safe.

Keywords: Clary, essential oils, monarda, phytobiotics, poultry, thyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558