Search results for: Thorne J. McFarlane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Thorne J. McFarlane

3 Academic Influence of Social Network Sites on the Collegiate Performance of Technical College Students

Authors: Jameson McFarlane, Thorne J. McFarlane, Leon Bernard

Abstract:

Social network sites (SNS) is an emerging phenomenon that is here to stay. The popularity and the ubiquity of the SNS technology are undeniable. Because most SNS are free and easy to use people from all walks of life and from almost any age are attracted to that technology. College age students are by far the largest segment of the population using SNS. Since most SNS have been adapted for mobile devices, not only do you find students using this technology in their study, while working on labs or on projects, a substantial number of students have been found to use SNS even while listening to lectures. This study found that SNS use has a significant negative impact on the grade point average of college students particularly in the first semester. However, this negative impact is greatly diminished by the end of the third semester partly because the students have adjusted satisfactorily to the challenges of college or because they have learned how to adequately manage their time. It was established that the kinds of activities the students are engaged in during the SNS use are the leading factor affecting academic performance. Of those activities, using SNS during a lecture or while studying is the foremost contributing factor to lower academic performance. This is due to “cognitive” or “information” bottleneck, a condition in which the students find it very difficult to multitask or to switch between resources leading to inefficiency in information retention and thus, educational performance.

Keywords: Social network sites, social network analysis, regression coefficient, psychological engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
2 Bio-Ecological Monitoring of Potatoes Stem Nematodes (Ditylenchus destructor Thorne, 1945) in Four Major Potato-Planter Municipalities of Kvemo Kartli (Eastern Georgia) Accompanying Fauna Biodiversity

Authors: E. Tskitishvili, L. Jgenti, I. Eliava, T. Tskitishvili, N. Bagathuria, M. Gigolashvili

Abstract:

There has been studied the distribution character of potato stem nematode (Ditylenchus destructor Thorne, 1945) on the potato fields in four municipalities (Tsalka, Bolnisi, Marneuli, Gardabani) of Kvemo Kartli (Eastern Georgia).

As a result of scientific research there is stated the extensiveness of pathogens invasion, accompanying composition of fauna species, environmental groups of populations and quantity.

During the research process in the studied ecosystems there were registered 160 forms of free-living and Phyto-parasitic nematodes, from which 118 forms are determined as species and 42 as genus.

It was found that in almost the entire studied ecosystem there is dominated pathogenic nematodes Ditylenchus destructor. The large number of exemplars (almost uncountable) was found in tubers material of Bolnisi and Gardabani. 

Keywords: Nematoda, potato, steam, bioecological, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
1 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: Video surveillance, disentanglement, face detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607