Search results for: Surface Enhanced Raman Scattering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2874

Search results for: Surface Enhanced Raman Scattering

2634 Analysis of Target Location Estimation in High Performance Radar System

Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park

Abstract:

In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.

Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
2633 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12

Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu

Abstract:

Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and micro hardness) with different USP process parameters were measured. The research proposes that radius of curvature of shot peened sheet increases with time and electric current decreasing, while increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical micro hardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.

Keywords: USP forming, surface properties, radius of curvature, residual stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2632 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network

Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh

Abstract:

End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.

Keywords: End milling, Surface roughness, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
2631 An Infrared Investigation on Surface Species over Iron-Based Catalysts: Implications for Oxygenates Formation

Authors: Wanyu Mao, Hongfang Ma, Haitao Zhang, WeixinQian, Weiyong Ying

Abstract:

The nature of adsorbed species on catalytic surface over an industrial precipitated iron-based high temperature catalyst during FTS was investigated by in-situ DRIFTS and chemical trapping. The formulation of the mechanism of oxygenates formation and key intermediates were also discussed. Numerous oxygenated precursors and crucial intermediates were found by in-situ DRIFTS, such as surface acetate, acetyl and methoxide. The results showed that adsorbed molecules on surface such as methanol or acetaldehyde could react with basic sites such as lattice oxygen or free surface hydroxyls. Adsorbed molecules also had reactivity of oxidizing. Moreover, acetyl as a key intermediate for oxygenates was observed by investigation of CH3OH + CO and CH3I + CO + H2. Based on the nature of surface properties, the mechanism of oxygenates formation on precipitated iron-based high temperature catalyst was discussed.

Keywords: Iron-based catalysts, intermediates, oxygenates, in-situ DRIFTS, chemical trapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2630 Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach.

Keywords: Nanomaterials, finite element method, sizedependency, surface stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
2629 The Influence of Surface Roughness of Drawbead on Non-Symmetry Deep Drawing Cold Rolled Steel Sheet

Authors: A. Watanapa, S. Torsakul

Abstract:

This study was aimed to explain the influence of surface roughness of the drawbead on non-symmetry deep drawing cold rolled steel sheet to improve the drawability of cold rolled steel sheet. The variables used in this study included semi-circle drawbead with 3 levels of surface roughness which are 6.127 mm Ra, 0.963 mm Ra and 0.152 mm Ra and cold rolled steel sheet according to 3 grades of the JIS standards which are SPCC, SPCE and SPCD with the thickness of 1.0 mm and the blankholder force which is 50% of the drawing force and the depth of 50 mm. According to the test results, when there was the increase in the surface roughness of drawbead, there would be the increase in deep drawing force, especially the SPCC cold rolled steel sheet. This is similar to the increase in the equivalent strain and the wall thickness distribution when the surface roughness of the drawbead increased. It could be concluded that the surface roughness of drawbead has an influence on deep drawing cold rolled steel sheet, especially the drawing force, the equivalent strain and the wall thickness distribution.

Keywords: Drawbead, Deep Drawing, Drawing Force, Equivalent Strain, Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
2628 Effect of Coolant on Cutting Forces and Surface Roughness in Grinding of CSM GFRP

Authors: P Chockalingam, K Kok, R Vijayaram

Abstract:

This paper presents a comparative study on dry and wet grinding through experimental investigation in the grinding of CSM glass fibre reinforced polymer laminates using a pink aluminium oxide wheel. Different sets of experiments were performed to study the effects of the independent grinding parameters such as grinding wheel speed, feed and depth of cut on dependent performance criteria such as cutting forces and surface finish. Experimental conditions were laid out using design of experiment central composite design. An effective coolant was sought in this study to minimise cutting forces and surface roughness for GFRP laminates grinding. Test results showed that the use of coolants reduces surface roughness, although not necessarily the cutting forces. These research findings provide useful economic machining solution in terms of optimized grinding conditions for grinding CSM GFRP.

Keywords: Chopped Strand Mat GFRP laminates, Dry and Wet Grinding, Cutting Forces, Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4191
2627 Surface Roughness of Flange Contact to the 25A-size Metal Gasket by using FEM Simulation

Authors: Shigeyuki Haruyama , Didik Nurhadiyanto, Moch Agus Choiron, Ken Kaminishi

Abstract:

The previous study of new metal gasket that contact width and contact stress an important design parameter for optimizing metal gasket performance. The optimum design based on an elastic and plastic contact stress was founded. However, the influence of flange surface roughness had not been investigated thoroughly. The flange has many kinds of surface roughness. In this study, we conducted a gasket model include a flange surface roughness effect. A finite element method was employed to develop simulation solution. A uniform quadratic mesh used for meshing the gasket material and a gradually quadrilateral mesh used for meshing the flange. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. A simulation result shows that a smoother of surface roughness has higher slope for force per unit length. This mean a squeezed against between flange and gasket will be strong. The slope of force per unit length for gasket 400-MPa mode was higher than the gasket 0-MPa mode.

Keywords: Surface roughness, flange, metal gasket, leakage, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
2626 Using Ultrasonic and Infrared Sensors for Distance Measurement

Authors: Tarek Mohammad

Abstract:

The amplitude response of infrared (IR) sensors depends on the reflectance properties of the target. Therefore, in order to use IR sensor for measuring distances accurately, prior knowledge of the surface must be known. This paper describes the Phong Illumination Model for determining the properties of a surface and subsequently calculating the distance to the surface. The angular position of the IR sensor is computed as normal to the surface for simplifying the calculation. Ultrasonic (US) sensor can provide the initial information on distance to obtain the parameters for this method. In addition, the experimental results obtained by using LabView are discussed. More care should be taken when placing the objects from the sensors during acquiring data since the small change in angle could show very different distance than the actual one. Since stereo camera vision systems do not perform well under some environmental conditions such as plain wall, glass surfaces, or poor lighting conditions, the IR and US sensors can be used additionally to improve the overall vision systems of mobile robots.

Keywords: Distance Measurement, Infrared sensor, Surface properties, Ultrasonic sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14937
2625 Study on Robot Trajectory Planning by Robot End-Effector Using Dual Curvature Theory of the Ruled Surface

Authors: Y. S. Oh, P. Abhishesh, B. S. Ryuh

Abstract:

This paper presents the method of trajectory planning by the robot end-effector which accounts for more accurate and smooth differential geometry of the ruled surface generated by tool line fixed with end-effector based on the methods of curvature theory of ruled surface and the dual curvature theory, and focuses on the underlying relation to unite them for enhancing the efficiency for trajectory planning. Robot motion can be represented as motion properties of the ruled surface generated by trajectory of the Tool Center Point (TCP). The linear and angular properties of the six degree-of-freedom motion of end-effector are computed using the explicit formulas and functions from curvature theory and dual curvature theory. This paper explains the complete dualization of ruled surface and shows that the linear and angular motion applied using the method of dual curvature theory is more accurate and less complex.

Keywords: Dual curvature theory, robot end effector, ruled surface, TCP, tool center point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
2624 Effect of Social Media on Knowledge Work

Authors: Pekka Makkonen, Georgios Lampropoulos, Kerstin Siakas

Abstract:

This paper examines the impact of social media on knowledge work. It discloses and highlights which specific aspects, areas and tasks of knowledge work can be improved by the use of social media. Moreover, the study includes a survey about higher education students’ viewpoints in regard to the use of social media as a means to enhance knowledge work and knowledge sharing. The analysis has been conducted based both on empirical data and on discussions about the sources dealing with knowledge work and how it can be enhanced by using social media. The results show that social media can improve knowledge work, knowledge building and maintenance tasks in which communication, information sharing and collaboration play a vital role. Additionally, by using social media, personal, collaborative and supplementary work activities can be enhanced. Based on the results of the study, we suggest how knowledge work can be enhanced when using the contemporary information and communications technologies (ICTs) of the 21st century and recommend future directions towards improving knowledge work.

Keywords: Knowledge work, social media, social media services, improving work performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
2623 Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
2622 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10% 

Keywords: Biomass, combustion, electrodynamic control, gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
2621 Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy

Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin

Abstract:

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.

Keywords: Surface flattening, Strain energy, Minimum energy, approximate implicit method, Fashion design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
2620 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: Additive manufacturing, selective laser melting, surface roughness, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
2619 Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM

Authors: A. Megalingam, M.M.Mayuram

Abstract:

Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.

Keywords: Asperity interaction, finite element method, rough surface contact, single layered solid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
2618 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2617 The Optimum Aeration Time of Wastewater Treatment by Surface Aerators in Suan Sunandha Rajabhat University

Authors: Anat Thapinta

Abstract:

This research aimed to study on the efficiency of wastewater treatment by comparing the different aeration times of surface aerators in Suan Sunandha Rajabhat University. In doing so, the operation of surface aerators was divided into 2 groups which included the groups of 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day. As a result of the study, it was found that the efficiency of wastewater treatment in the forms of DO, BOD, turbidity and NO2- by 8 hours (8-0/opened-closed) and 4 hours (2-2/opened-closed) of aeration time per day of surface aerators was not statistically different [Sig. = .644, .488, .716 and .054 > α (.05)] while the efficiency in the forms of NO3- and P was significantly different at the statistical level of .01 [Sig. = .001 and .000 < α (.01)].

Keywords: Aeration time, Surface aerator, Wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
2616 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: Indoor air, carbon nanoparticles, LPG, partially premixed flame, optical techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
2615 Characterization of Chemically Modified Biomass as a Coating Material for Controlled Released Urea by Contact Angle Measurement

Authors: Nur Zahirah Zulhaimi, KuZilati KuShaari, Zakaria Man

Abstract:

Controlled release urea has become popular in agricultural industry as it helps to solve environmental issues and increase crop yield. Recently biomass was identified to replace the polymer used as a coating material in the conventional coated urea. In this paper spreading and contact angle of biomass droplet (lignin, cellulose and clay) on urea surface are investigated experimentally. There were two tests were conducted, sessile drop for contact angle measurement and pendant drop for contact angle measurement. A different concentration of biomass droplet was released from 30 mm above a substrate. Glass was used as a controlled substrate. Images were recorded as soon as the droplet impacted onto the urea before completely adsorb into the urea. Digitized droplets were then used to identify the droplet-s surface tension and contact angle. There is large difference observed between the low surface tension and high surface tension liquids, where the wetting and spreading diameter is higher for lower surface tension. From the contact angle results, the data showed that the biomass coating films were possible as wetting liquid (θ < 90º). Contact angle of biomass coating material gives good indication for the wettablity of a liquid on urea surface.

Keywords: Fluid, Dynamics, Droplet, Spreading, Contact Angle, Surface Tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
2614 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
2613 The Water Quantity and Quality for Conjunctive Use in Saline Soil Problem Area

Authors: P. Mekpruksawong, S. Chuenchooklin, T. Ichikawa

Abstract:

The aim of research project is to evaluate quantity and quality for conjunctive use of groundwater and surface water in lower in the Lower Nam Kam area, Thailand, even though there have been hints of saline soil and water. The mathematical model named WUSMO and MIKE Basin were applied for the calculation of crop water utilization. Results of the study showed that, in irrigation command area, water consumption rely on various sources; rain water 21.56%, irrigation water 78.29%, groundwater and some small surface storage 0.15%. Meanwhile, for non-irrigation command area, water consumption depends on the Nam Kam and Nambang stream 42%, rain water 36.75% and groundwater and some small surface storage 19.18%. Samples of surface water and groundwater were collected for 2 seasons. The criterion was determined for the assessment of suitable water for irrigation. It was found that this area has very limited sources of suitable water for irrigation.

Keywords: Conjunctive use, Groundwater, Surface water, Saline soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
2612 Modeling and Analysis of Process Parameters on Surface Roughness in EDM of AISI D2 Tool Steel by RSM Approach

Authors: M. K. Pradhan, C. K. Biswas

Abstract:

In this research, Response Surface Methodology (RSM) is used to investigate the effect of four controllable input variables namely: discharge current, pulse duration, pulse off time and applied voltage Surface Roughness (SR) of on Electrical Discharge Machined surface. To study the proposed second-order polynomial model for SR, a Central Composite Design (CCD) is used to estimation the model coefficients of the four input factors, which are alleged to influence the SR in Electrical Discharge Machining (EDM) process. Experiments were conducted on AISI D2 tool steel with copper electrode. The response is modeled using RSM on experimental data. The significant coefficients are obtained by performing Analysis of Variance (ANOVA) at 5% level of significance. It is found that discharge current, pulse duration, and pulse off time and few of their interactions have significant effect on the SR. The model sufficiency is very satisfactory as the Coefficient of Determination (R2) is found to be 91.7% and adjusted R2-statistic (R2 adj ) 89.6%.

Keywords: Electrical discharge machining, surface roughness, response surface methodology, ANOVA, central composite design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2611 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: Nano-enhanced phase change material, phase change material, nanoparticles, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
2610 The Estimation of Semi Elliptical Surface Cracks Advancement via Fuzzy Logic

Authors: Gürol Önal, Ahmet Avcı

Abstract:

This paper presented the results of an experimental investigation into the axial fatigue behavior of a 5086 aluminum alloy which have several notch-aspect ratios a0/c0 and notch thickness ratio a/t with semi-elliptical surface cracks. Tests were conducted in la b air for stress levels of 50 % of their yield strength. Experiments were carried out for various notch to thickness ratios. Crack growth rates of test specimens both in surface and depth directions were determined by using die penetration method. Fuzzy Logic method was used to predict the deep direction crack growth because the dept of the crack is considerably difficult to measure.

Keywords: Axial fatigue, Crack growth rate, surface crack, Al-Mg alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
2609 Synthesis of Aragonite Superstructure from Steelmaking Slag via Indirect CO2 Mineral Sequestration

Authors: Weijun Bao, Huiquan Li

Abstract:

Using steelmaking slag as a raw material, aragonite superstructure product had been synthesized via an indirect CO2 mineral sequestration rout. It mainly involved two separate steps, in which the element of calcium is first selectively leached from steelmaking slag by a novel leaching media consisting of organic solvent Tributyl phosphate (TBP), acetic acid, and ultra-purity water, followed by enhanced carbonation in a separate step for aragonite superstructure production as well as efficiency recovery of leaching media. Based on the different leaching medium employed in the steelmaking slag leaching process, two typical products were collected from the enhanced carbonation step. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. It reveals that the needle-like aragonite crystals self-organized into aragonite superstructure particles including aragonite microspheres as well as dumbbell-like spherical particles, can be obtained from the steelmaking slag with the purity over 99%.

Keywords: Aragonite superstructure, Steelmaking slag, Indirect CO2 mineral sequestration, Selective leaching, Enhanced carbonation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
2608 Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity

Authors: Maribel G. Guzmán, Jean Dille, Stephan Godet

Abstract:

Silver nanoparticles were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and hydrazine hydrate as a reducing agent. The formation of the silver nanoparticles was monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanopart├¡cles by exhibing the typical surface plasmon absorption maxima at 418-420 nm from the UV–Vis spectrum. Comparison of theoretical (Mie light scattering theory) and experimental results showed that diameter of silver nanoparticles in colloidal solution is about 60 nm. We have used energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and, UV–Vis spectroscopy to characterize the nanoparticles obtained. The energy-dispersive spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal no peaks of other impurity were detected. The average size and morphology of silver nanoparticles were determined by transmission electron microscopy (TEM). TEM photographs indicate that the nanopowders consist of well dispersed agglomerates of grains with a narrow size distribution (40 and 60 nm), whereas the radius of the individual particles are between 10 and 20 nm. The synthesized nanoparticles have been structurally characterized by X-ray diffraction and transmission high-energy electron diffraction (HEED). The peaks in the XRD pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver (ICCD-JCPDS card no. 4-0787) and no peaks of other impurity crystalline phases were detected. Additionally, the antibacterial activity of the nanopart├¡culas dispersion was measured by Kirby-Bauer method. The nanoparticles of silver showed high antimicrobial and bactericidal activity against gram positive bacteria such as Escherichia Coli, Pseudimonas aureginosa and staphylococcus aureus which is a highly methicillin resistant strain.

Keywords: Silver nanoparticles, surface plasmon, UV-Vis absorption spectrum, chemicals reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12952
2607 Numerical Analysis of Electrical Interaction between two Axisymmetric Spheroids

Authors: Kuan-Liang Liu, Eric Lee, Jung-Jyh Lee, Jyh-Ping Hsu

Abstract:

The electrical interaction between two axisymmetric spheroidal particles in an electrolyte solution is examined numerically. A Galerkin finite element method combined with a Newton-Raphson iteration scheme is proposed to evaluate the spatial variation in the electrical potential, and the result obtained used to estimate the interaction energy between two particles. We show that if the surface charge density is fixed, the potential gradient is larger at a point, which has a larger curvature, and if surface potential is fixed, surface charge density is proportional to the curvature. Also, if the total interaction energy against closest surface-to-surface curve exhibits a primary maximum, the maximum follows the order (oblate-oblate) > (sphere-sphere)>(oblate-prolate)>(prolate-prolate), and if the curve has a secondary minimum, the absolute value of the minimum follows the same order.

Keywords: interaction energy, interaction force, Poisson-Boltzmann equation, spheroid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
2606 Selection of Plants as Possible Rhizoremediators for Restoration of Oil Contaminated Soil

Authors: Togzhan D. Mukasheva, Anel A. Omirbekova, Raikhan S. Sydykbekova, Ramza Zh. Berzhanova, Lyudmila V. Ignatova

Abstract:

In studying the possibility of using plants as rhizoremediators, barley and grass mixture which showed resistance to various concentrations of oil were selected. The minimum inhibitory effect of oil on these plants by morphological parameters such as survival of plants, length and biomass of shoot and root compared with the control was showed. In determining physiological parameters, a slight decrease in the number of chlorophyll a and b in the leaves of plants was noted. The differences in the ratio of the total surface of the roots to the work surface with the growth of plants in soil with oil in the study of adsorption of the root surface were showed.

Keywords: Length of shoot and root, biomass, chlorophyll a and b, adsorption surface, barley, grass mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
2605 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: Live tooling, surface roughness, Taguchi analysis, Computer Numerical Control (CNC) milling operation, CNC turning operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704