Search results for: Simulation study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15134

Search results for: Simulation study

14954 A Parametric Study on Deoiling Hydrocyclones Flow Field

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Keywords: Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
14953 Simulation of Voltage Controlled Tunable All Pass Filter Using LM13700 OTA

Authors: Bhaba Priyo Das, Neville Watson, Yonghe Liu

Abstract:

In recent years Operational Transconductance Amplifier based high frequency integrated circuits, filters and systems have been widely investigated. The usefulness of OTAs over conventional OP-Amps in the design of both first order and second order active filters are well documented. This paper discusses some of the tunability issues using the Matlab/Simulink® software which are previously unreported for any commercial OTA. Using the simulation results two first order voltage controlled all pass filters with phase tuning capability are proposed.

Keywords: All pass filter, Operational Transconductance Amplifier, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3563
14952 Effect of Non Uniformity Factors and Assignment Factors on Errors in Charge Simulation Method with Point Charge Model

Authors: Gururaj S Punekar, N K Kishore Senior, H S Y Shastry

Abstract:

Charge Simulation Method (CSM) is one of the very widely used numerical field computation technique in High Voltage (HV) engineering. The high voltage fields of varying non uniformities are encountered in practice. CSM programs being case specific, the simulation accuracies heavily depend on the user (programmers) experience. Here is an effort to understand CSM errors and evolve some guidelines to setup accurate CSM models, relating non uniformities with assignment factors. The results are for the six-point-charge model of sphere-plane gap geometry. Using genetic algorithm (GA) as tool, optimum assignment factors at different non uniformity factors for this model have been evaluated and analyzed. It is shown that the symmetrically placed six-point-charge models can be good enough to set up CSM programs with potential errors less than 0.1% when the field non uniformity factor is greater than 2.64 (field utilization factor less than 52.76%).

Keywords: Assignment factor, Charge Simulation Method, High Voltage, Numerical field computation, Non uniformity factor, Simulation errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
14951 Research on Platform of Testing Reference Point Effect under Managerial Decision-making Simulation Environment

Authors: Yang Jiang, Zhuchao Yu, Zhu Wang, Xueying Hong

Abstract:

Reference point effects of top managers exerts an influence on managerial decision-making behaviors. We introduces the main idea of developing the decision behavior testing system designed for top manager in team task circumstance. According to the theory of the reference point effect, study of testing experiments in the reference point effect is carried out. Under managerial decision-making simulation environment, a platform is designed for testing reference point effect. The system uses the outcome of the value of the reference point to report the characteristics of the decision behavior of top managers.

Keywords: reference point effect, decision-making behavior, top manager, managerial decision-making simulation environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
14950 The Data Mining usage in Production System Management

Authors: Pavel Vazan, Pavol Tanuska, Michal Kebisek

Abstract:

The paper gives the pilot results of the project that is oriented on the use of data mining techniques and knowledge discoveries from production systems through them. They have been used in the management of these systems. The simulation models of manufacturing systems have been developed to obtain the necessary data about production. The authors have developed the way of storing data obtained from the simulation models in the data warehouse. Data mining model has been created by using specific methods and selected techniques for defined problems of production system management. The new knowledge has been applied to production management system. Gained knowledge has been tested on simulation models of the production system. An important benefit of the project has been proposal of the new methodology. This methodology is focused on data mining from the databases that store operational data about the production process.

Keywords: data mining, data warehousing, management of production system, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
14949 Real-time Interactive Ocean Wave Simulation using Multithread

Authors: K. Prachumrak, T. Kanchanapornchai

Abstract:

This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.

Keywords: Interactive wave, ocean wave, wind effect, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
14948 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
14947 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: Flexible job shop scheduling, Decision tree, Priority rules, Case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257
14946 The Influence of the Fin Set-up to the Cooling Output of the Floor Heating Convector

Authors: F. Lemfeld, K. Frana

Abstract:

This article deals with the numerical simulation of the floor heating convector in 3D. Presented convector can operate in two modes – cooling mode and heating mode. This initial numerical simulation is focused on cooling mode of the convector. Models with different temperature of the fins are compared and three various shapes of the fins are examined as well. The objective of the work is to predict air flow and heat transfer inside convector for further optimalization of these devices. For the numerical simulation was used commercial software Ansys Fluent.

Keywords: Cooling output, floor heating convector, numericalsimulation, optimalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
14945 Dynamic Traffic Simulation for Traffic Congestion Problem Using an Enhanced Algorithm

Authors: Wong Poh Lee, Mohd. Azam Osman, Abdullah Zawawi Talib, Ahmad Izani Md. Ismail

Abstract:

Traffic congestion has become a major problem in many countries. One of the main causes of traffic congestion is due to road merges. Vehicles tend to move slower when they reach the merging point. In this paper, an enhanced algorithm for traffic simulation based on the fluid-dynamic algorithm and kinematic wave theory is proposed. The enhanced algorithm is used to study traffic congestion at a road merge. This paper also describes the development of a dynamic traffic simulation tool which is used as a scenario planning and to forecast traffic congestion level in a certain time based on defined parameter values. The tool incorporates the enhanced algorithm as well as the two original algorithms. Output from the three above mentioned algorithms are measured in terms of traffic queue length, travel time and the total number of vehicles passing through the merging point. This paper also suggests an efficient way of reducing traffic congestion at a road merge by analyzing the traffic queue length and travel time.

Keywords: Dynamic, fluid-dynamic, kinematic wave theory, simulation, traffic congestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
14944 Direct Numerical Simulation of Subcooled Nucleate Pool Boiling

Authors: Sreeyuth Lal, Yohei Sato, Bojan Niceno

Abstract:

With the long-term objective of Critical Heat Flux (CHF) prediction, a Direct Numerical Simulation (DNS) framework for simulation of subcooled and saturated nucleate pool boiling is developed. One case of saturated, and three cases of subcooled boiling at different subcooling levels are simulated. Grid refinement study is also reported. Both boiling and condensation phenomena can be computed simultaneously in the proposed numerical framework. Computed bubble detachment diameters of the saturated nucleate pool boiling cases agree well with the experiment. The flow structures around the growing bubble are presented and the accompanying physics is described. The relation between heat flux evolution from the heated wall and the bubble growth is studied, along with investigations of temperature distribution and flow field evolutions.

Keywords: CFD, interface tracking method, phase change model, subcooled nucleate pool boiling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
14943 Large Eddy Simulation of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves a numerical simulation of the flow around a NACA2415 airfoil, with a 15°angle of attack, and flow separation control using a rod, It reposes inputting a cylindrical rod upstream of the leading edge in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, non-stationary flow is simulated using ANSYS FLUENT 13. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 51%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
14942 Direct Simulation Monte Carlo (DSMC) Algorithm – A Comparison of Mathematica Code with FLUENT 6.2 for Low Knudsen Number

Authors: Nabeel A. Qazi, Absaar ul Jabbar, Khalid Parvez

Abstract:

A code has been developed in Mathematica using Direct Simulation Monte Carlo (DSMC) technique. The code was tested for 2-D air flow around a circular cylinder. Same geometry and flow properties were used in FLUENT 6.2 for comparison. The results obtained from Mathematica simulation indicated significant agreement with FLUENT calculations, hence providing insight into particle nature of fluid flows.

Keywords: DSMC algorithm, non continuum gas flows, Monte Carlo methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
14941 A Real-Time Simulation Environment for Avionics Software Development and Qualification

Authors: U. Tancredi, D. Accardo, M. Grassi, G. Fasano, A. E. Tirri, A. Vitale, N. Genito, F. Montemari, L. Garbarino

Abstract:

The development of guidance, navigation and control algorithms and avionic procedures requires the disposability of suitable analysis and verification tools, such as simulation environments, which support the design process and allow detecting potential problems prior to the flight test, in order to make new technologies available at reduced cost, time and risk. This paper presents a simulation environment for avionic software development and qualification, especially aimed at equipment for general aviation aircrafts and unmanned aerial systems. The simulation environment includes models for short and medium-range radio-navigation aids, flight assistance systems, and ground control stations. All the software modules are able to simulate the modeled systems both in fast-time and real-time tests, and were implemented following component oriented modeling techniques and requirement based approach. The paper describes the specific models features, the architectures of the implemented software systems and its validation process. Performed validation tests highlighted the capability of the simulation environment to guarantee in real-time the required functionalities and performance of the simulated avionics systems, as well as to reproduce the interaction between these systems, thus permitting a realistic and reliable simulation of a complete mission scenario.

Keywords: ADS-B, avionics, NAVAIDs, real time simulation, TCAS, UAS ground control station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
14940 The Using of Mixing Amines in an Industrial Gas Sweetening Plant

Authors: B. Sohbi, M. Meakaff, M. Emtir, M. Elgarni

Abstract:

Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane; also in the raw state it often contains a considerable amount of non hydrocarbons, such as nitrogen and the acid gases (carbon dioxide and hydrogen sulfide). The acid gases must be removed from natural gas before use. One of the processes witch are use in the industry to remove the acid gases from natural gas is the use of alkanolamine process. In this present paper, a simulation study for an industrial gas sweetening plant has been investigated. The aim of the study is to investigate the effect of using mixing amines as solvent on the gas treatment process using the software Hysys.

Keywords: Natural gas, alkanolamine process, gas sweetening plant, simulation, mixing amines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751
14939 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities

Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat

Abstract:

The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.

Keywords: Maintenance, complexity, simulation, multi-agent systems, AnyLogic platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
14938 A Numerical Study on Rear-spoiler of Passenger Vehicle

Authors: Xu-xia Hu, Eric T. T. Wong

Abstract:

The simulation of external aerodynamics is one of the most challenging and important automotive CFD applications. With the rapid developments of digital computers, CFD is used as a practical tool in modern fluid dynamics research. It integrates fluid mechanics disciplines, mathematics and computer science. In this study, two different types of simulations were made, one for the flow around a simplified high speed passenger car with a rear-spoiler and the other for the flow without a rear-spoiler. The standard k-ε model is selected to numerically simulate the external flow field of the simplified Camry model with or without a rear-spoiler. Through an analysis of the simulation results, a new rear spoiler is designed and it shows a mild reduction of the vehicle aerodynamics drag. This leads to less vehicle fuel consumption on the road.

Keywords: CFD, vehicle rear-spoiler design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4851
14937 Software Digital Phase-locked Loop for Induction Motor Speed Control

Authors: Benmabrouk. Zaineb, Ben Hamed. Mouna, Lassad. Sbita

Abstract:

This article deals to describe the simulation investigation of the digital phase locked loop implemented in software (SDPLL). SDPLL has been developed for speed drives of an induction motor in scalar strategy. A drive was implemented and simulation results are presented to verify the robustness against motor parameter variation and regulation speed.

Keywords: Induction motor, Software Digital Phase LockedLoop, Speed control, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
14936 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
14935 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method

Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi

Abstract:

The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
14934 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
14933 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB

Authors: Deepak Kumar, Vivek Kumar, V. P. Singh

Abstract:

This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.

Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
14932 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.

Keywords: Three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
14931 Experimental and Numerical Simulation of Fire in a Scaled Underground Station

Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler

Abstract:

The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.

Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
14930 Effect of Fault Depth on Near-Fault Peak Ground Velocity

Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun

Abstract:

Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.

Keywords: Fault depth, near-fault, PGV, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
14929 Contact Drying Simulation of Particulate Materials: A Comprehensive Approach

Authors: Marco Intelvi, Apolinar Picado, Joaquín Martínez

Abstract:

In this work, simulation algorithms for contact drying of agitated particulate materials under vacuum and at atmospheric pressure were developed. The implementation of algorithms gives a predictive estimation of drying rate curves and bulk bed temperature during contact drying. The calculations are based on the penetration model to describe the drying process, where all process parameters such as heat and mass transfer coefficients, effective bed properties, gas and liquid phase properties are estimated with proper correlations. Simulation results were compared with experimental data from the literature. In both cases, simulation results were in good agreement with experimental data. Few deviations were identified and the limitations of the predictive capabilities of the models are discussed. The programs give a good insight of the drying behaviour of the analysed powders.

Keywords: Agitated bed, Atmospheric pressure, Penetrationmodel, Vacuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
14928 Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan

Authors: Y.C. Yeh, Y.S. Tsay, C.M. Chiang

Abstract:

A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.

Keywords: Effective Moisture Penetration Depth Method, Moisture Buffering Effect, Interior Material, Green Material, EnergyPlus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
14927 Tomographic Images Reconstruction Simulation for Defects Detection in Specimen

Authors: Kedit J.

Abstract:

This paper is the tomographic images reconstruction simulation for defects detection in specimen. The specimen is the thin cylindrical steel contained with low density materials. The defects in material are simulated in three shapes.The specimen image function will be transformed to projection data. Radon transform and its inverse provide the mathematical for reconstructing tomographic images from projection data. The result of the simulation show that the reconstruction images is complete for defect detection.

Keywords: Tomography, Tomography Reconstruction, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
14926 Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation

Authors: Hiroyuki Nishida, Taku Nonomura, Takashi Abe

Abstract:

Wall-surface jet induced by the dielectric barrier discharge (DBD) has been proposed as an actuator for active flow control in aerodynamic applications. Discharge plasma evolution of the DBD plasma actuator was simulated based on a simple fluid model, in which the electron, one type of positive ion and negative ion were taken into account. Two-dimensional simulation was conducted, and the results are in agreement with the insights obtained from experimental studies. The simulation results indicate that the discharge mode changes depending on applied voltage slope; when the applied voltage is positive-going with high applied voltage slope, the corona-type discharge mode turns into the streamer-type discharge mode and the threshold voltage slope is around 300 kV/ms in this simulation. The characteristics of the electrohydrodynamic (EHD) force, which is the source of the wall-surface jet, also change depending on the discharge mode; the tentative peak value of the EHD force during the positive-going voltage phase is saturated by the periodical formation of the streamer-type discharge.

Keywords: Dielectric barrier discharge, Plasma actuator, Fluid simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
14925 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software

Authors: Elham Zamiri

Abstract:

In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 C to 70 C. This investigation is developable for any geometry and material used in the nuclear reactor.

Keywords: Nuclear fuel fission, numberal simulation, fuel rod, reactor, fluent software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653