Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 492

Search results for: Silk fibroin fiber.

402 Hazardous Waste Generated in the Peruvian Textile Industry: Haute Couture, Alpaca Fiber and Tannery

Authors: Huiman C. Alberto

Abstract:

The research cites the various hazardous waste generated in the textile industry. The method used is descriptive and comparative, the process consisted of the search and evaluation of information, both nationally and internationally. The results indicate: (1) Waste is generated from the alpaca fiber industry in the various stages of camelid rearing, they stand out for their dangerousness: excreta, residual fiber and yarn scraps. (2) The main hazardous waste generated by the tannery industry are grease, hides, hair, plastic containers with traces of toxic substances, chips and pieces of leather with chrome. (3) Three companies' Solid Waste Management Plans were analyzed, randomly selected, and none of them detail waste treatment processes and warn of the lack of supervision by the authorities. It is concluded that the hazardous waste generated can affect human and environmental health. There is the possibility of taking advantage of certain hazardous waste such as manure and alpaca fiber, after treatment; while non-hazardous waste from the tannery such as yarn, panel weaving, cloth, scraps, and thread, can be used to produce new products, generating a production chain in favor of the entrepreneur himself.

Keywords: Alpaca fiber, excreta, Haute couture, hazardous waste tannery, hazardous waste treatment, textile waste,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305
401 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Mudhafar Hashim, Aseel Mahmood Abdullah

Abstract:

The present work introduced a green composite consisting of corn natural fiber of constant concentration of 10% by weight incorporation with poly methyl methacrylate matrix biomaterial prepared by hand lay-up technique. Corn natural fibers were treated with two concentrations of sodium hydroxide solution (3% and 5%) with different immersed time (1.5 and 3 hours) at room temperature. The fracture toughness test of untreated and alkali treated corn fiber composites were performed. The effect of chemically treated on fracture properties of composites has been analyzed using Fourier transform infrared (FTIR) spectroscopy. The experimental results showed that the alkali treatment improved the fracture properties in terms of plane strain fracture toughness KIC. It was found that the plane strain fracture toughness KIC increased by up to 62% compared to untreated fiber composites. On the other hand, increases in both concentrations of alkali solution and time of soaking to 5% NaOH and 3 hours, respectively reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, Bio-PMMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441
400 Influence of Atmospheric Physical Effects on Static Behavior of Building Plate Components Made of Fiber-Cement-Based Materials

Authors: Jindrich J. Melcher, Marcela Karmazínová

Abstract:

The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the changes of the temperature and moisture of the investigated structural components. This can affect their static behavior that means stresses and deformations, which have been monitored as the main outputs of tests performed. Experimental verification is based on the simulation of the influence of temperature and rain using the defined procedure of warming and water sprinkling with respect to the corresponding weather conditions during summer period in the South Moravian region at the Czech Republic, for which the application of these structural components is mainly planned. Two types of components have been tested: (i) glass-fiber-concrete panels used for building façades and (ii) fiber-cement slabs used mainly for claddings, but also as a part of floor structures or lost shuttering, and so on.

Keywords: Atmospheric physical effect, building component, experiment, fiber-cement, glass-fiber-concrete, simulation, static behavior, test, warming, water sprinkling, weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
399 MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: MATLAB, SANTAD, in-service transmission surveillance, self restoration, fiber fault, FTTH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
398 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites

Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam

Abstract:

E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.

Keywords: E-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
397 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix

Authors: Comingstarful Marthong, Deba Kumar Sarma

Abstract:

Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.

Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
396 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution have been prepared and the amount of silver nitrate have been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), Tensile tester, Differential scanning calorimeter DSC (Q10) and SEM respectively. Also antimicrobial efficiency test (ASTM E2149-10) was done against to Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: Composite polyacrylonitrile nano-fiber, electrical conductivity, electrospinning, mechanical and thermal properties, silver nano-particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
395 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: Effective properties, representative volume element, short fiber reinforced composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
394 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams

Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar

Abstract:

An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.

Keywords: Basalt fiber, steel fiber, reinforced concrete beams, flexural behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
393 Effect of Ply Orientation on Roughness for the Trimming Process of CFRP Laminates

Authors: Jean François Chatelain, Imed Zaghbani, Joseph Monier

Abstract:

The machining of Carbon Fiber Reinforced Plastics has come to constitute a significant challenge for many fields of industry. The resulting surface finish of machined parts is of primary concern for several reasons, including contact quality and impact on the assembly. Therefore, the characterization and prediction of roughness based on machining parameters are crucial for costeffective operations. In this study, a PCD tool comprised of two straight flutes was used to trim 32-ply carbon fiber laminates in a bid to analyze the effects of the feed rate and the cutting speed on the surface roughness. The results show that while the speed has but a slight impact on the surface finish, the feed rate for its part affects it strongly. A detailed study was also conducted on the effect of fiber orientation on surface roughness, for quasi-isotropic laminates used in aerospace. The resulting roughness profiles for the four-ply orientation lay-up were compared, and it was found that fiber angle is a critical parameter relating to surface roughness. One of the four orientations studied led to very poor surface finishes, and characteristic roughness profiles were identified and found to only relate to the ply orientations of multilayer carbon fiber laminates.

Keywords: Roughness, Detouring, Composites, Aerospace

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
392 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
391 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al2O3 insulation coating, reactive sputtering, SiC single fiber sensor, single fiber tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
390 Optical Fiber Sensor for Detection of Carbon Nanotubes

Authors: C. I. L. Justino, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte

Abstract:

This work relates the development of an optical fiber (OF) sensor for the detection and quantification of single walled carbon nanotubes in aqueous solutions. The developed OF displays a compact design, it requires less expensive materials and equipment as well as low volume of sample (0.2 mL). This methodology was also validated by the comparison of its analytical performance with that of a standard methodology based on ultraviolet-visible spectroscopy. The developed OF sensor follows the general SDS calibration proposed for OF sensors as a more suitable calibration fitting compared with classical calibrations.

Keywords: Optical fiber sensor, single-walled carbon nanotubes, SDS calibration model, UV-Vis spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
389 Energy Systems and Crushing Behavior of Fiber Reinforced Composite Materials

Authors: Hakim S. Sultan Aljibori

Abstract:

Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.

Keywords: Crushing behavior, jute fiber, composite tubes andSpecific energy absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
388 Affecting Factors of the Mechanical Properties to Phenolic/Fiber Composite

Authors: Thirapat Kitinirunkul, Nattawat Winya, Komson Prapunkarn

Abstract:

Influences of the amount of phenolic, curing temperature and curing time on the Mechanical Properties of phenolic/fiber composite were investigated by using two-level factorial design. The latter was used to determine the affects of those factors on mechanical properties. The purpose of this study was to investigate the affects of amount of phenolic, curing temperature and curing time of the composite to determine the best condition for mechanical properties according to MIL-I-24768 by the tensile strength is more than 103 MPa.

Keywords: Phenolic Resin, Composite, Fiber Composite, Affecting Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4054
387 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber

Authors: Habib Shaban

Abstract:

Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.

Keywords: Nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
386 Radio over Fiber as a Cost Effective Technology for Transmission of WiMAX Signals

Authors: Mohammad Shaifur Rahman, Jung Hyun Lee, Youngil Park, Ki-Doo Kim

Abstract:

In this paper, an overview of the radio over fiber (RoF) technology is provided. Obstacles for reducing the capital and operational expenses in the existing systems are discussed in various perspectives. Some possible RoF deployment scenarios for WiMAX data transmission are proposed as a means for capital and operational expenses reduction. IEEE 802.16a standard based end-to-end physical layer model is simulated including intensity modulated direct detection RoF technology. Finally the feasibility of RoF technology to carry WiMAX signals between the base station and the remote antenna units is demonstrated using the simulation results.

Keywords: IMDD, Radio over Fiber, Remote Antenna Unit, WiMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
385 Morphological and Dynamic Mechanical Analyses of a Local Clay/Plantain Fiber Filled Hybrid Polystyrene Composites

Authors: K. P. Odimayomi, A. G. Adeniyi, S. A. Abdulkareem, F. M. Oladipo Emmanuel, C. A. Adeyanju, M. A Amoloye

Abstract:

The abundant availability of the local clay/plantain fiber coupled with the various renewable and sustainability advantages has led to their choice as co-fillers in the development of a hybrid polystyrene composite. The prime objective of this study is to evaluate the morphological and dynamic mechanical properties using Scanning Electron Microscopy and Dynamic Mechanical Analysis. The hybrid polystyrene composite development was developed via the hand-lay-up method. All processing including the constituent mixing and curing were achieved at room temperature (25 ± 2 ℃).   The mechanical characteristics of the developed composites via Dynamic Mechanical Analysis (DMA) confirm an indirect relationship between time and storage modulus, this pattern becomes more evident at higher frequencies. It is clearly portrayed that the addition of clay and plantain fiber in the polystyrene matrix increases the stiffness of the developed composite.

Keywords: Morphology, DMA, Akerebiata clay, plantain fiber, hybrid polystyrene composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252
384 Development of a Fiber based Interferometric Sensor for Non-contact Displacement Measurement

Authors: S. Pullteap

Abstract:

In this paper, a fiber based Fabry-Perot interferometer is proposed and demonstrated for a non-contact displacement measurement. A piece of micro-prism which attached to the mechanical vibrator is served as the target reflector. Interference signal is generated from the superposition between the sensing beam and the reference beam within the sensing arm of the fiber sensor. This signal is then converted to the displacement value by using a developed program written in visual Cµ programming with a resolution of λ/8. A classical function generator is operated for controlling the vibrator. By fixing an excitation frequency of 100 Hz and varying the excitation amplitude range of 0.1 – 3 Volts, the output displacements measured by the fiber sensor are obtained from 1.55 μm to 30.225 μm. A reference displacement sensor with a sensitivity of ~0.4 μm is also employed for comparing the displacement errors between both sensors. We found that over the entire displacement range, a maximum and average measurement error are obtained of 0.977% and 0.44% respectively.

Keywords: Non-contact displacement measurement, extrinsicfiber based Fabry-Perot interferometer, interference signal, zerocrossingfringe counting technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
383 Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network

Authors: Aswir Premadi, Mohammad Syuhaimi Ab. Rahman, Mohamad Najib Moh. Saupe, KasmiranJumari

Abstract:

An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.

Keywords: ACS, monitoring tool, FTTH-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2633
382 Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers

Authors: Samah Said, Muhsin Elie Rahhal

Abstract:

Due to the COVID-19 pandemic, disposable plastic-based face-masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Added to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similar to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand.

Keywords: COVID-19, mask fibers, compaction properties, soil reinforcement, shear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249
381 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites

Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib

Abstract:

Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.

Keywords: Cement composites, plant fibers, strength, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
380 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: Sub-micro-filler, nano-composites, interfacial shear strength, polyamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
379 Cooling-Rate Induced Fiber Birefringence Variation in Regenerated High Birefringent Fiber

Authors: M. H. Lai, D. S. Gunawardena, K. S. Lim, H. Ahmad

Abstract:

In this paper, we have reported birefringence manipulation in regenerated high birefringent fiber Bragg grating (RPMG) by using CO2 laser annealing method. The results indicate that the birefringence of RPMG remains unchanged after CO2 laser annealing followed by slow cooling process, but reduced after fast cooling process (~5.6×10-5). After a series of annealing procedures with different cooling rates, the obtained results show that slower the cooling rate, higher the birefringence of RPMG. The volume, thermal expansion coefficient (TEC) and glass transition temperature (Tg) change of stress applying part in RPMG during cooling process are responsible for the birefringence change. Therefore, these findings are important to the RPMG sensor in high and dynamic temperature environment. The measuring accuracy, range and sensitivity of RPMG sensor is greatly affected by its birefringence value. This work also opens up a new application of CO2 laser for fiber annealing and birefringence modification.

Keywords: Birefringence, CO2 laser annealing, regenerated gratings, thermal stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
378 Sound Absorption of Arenga Pinnata Natural Fiber

Authors: Lindawati Ismail, Mohd. Imran Ghazali, Shahruddin Mahzan, Ahmad Mujahid Ahmad Zaidi

Abstract:

Arenga pinnata is an abundantly natural fiber that can be used for sound proof material. However, the scientific data of acoustics properties of Arenga pinnata was not available yet. In this study the sound absorption of pure arenga pinnata was measured. The thickness of Arenga pinnata was varied in 10 mm, 20 mm, 30mm, and 40mm. This work was carried out to investigate the potential of using Arenga pinnata fiber as raw material for sound absorbing material. Impedance Tube Method was used to measure sound absorption coefficient (α). The Measurements was done in accordance with ASTM E1050-98, that is the standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system . The results showed that sound absorption coefficients of Arenga pinnata were good from 2000 Hz to 5000 Hz within the range of 0.75 – 0.90. The optimum sound absorption coefficient was obtained from the thickness of 40 mm. These results indicated that Arenga pinnata fiber is promising to be used as raw material of sound absorbing material with low cost, light, and biodegradable.

Keywords: Sound absorption, Arenga pinnata, raw material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
377 Group Velocity Dispersion Management of Microstructure Optical Fibers

Authors: S. M. Abdur Razzak, M. A. Rashid, Y. Namihira, A. Sayeem

Abstract:

A simple microstructure optical fiber design based on an octagonal cladding structure is presented for simultaneously controlling dispersion and leakage properties. The finite difference method with anisotropic perfectly matched boundary layer is used to investigate the guiding properties. It is demonstrated that octagonal photonic crystal fibers with four rings can assume negative ultra-flattened dispersion of -19 + 0.23 ps/nm/km in the wavelength range of 1.275 μm to 1.68 μm, nearly zero ultra-flattened dispersion of 0 ± 0.40 ps/nm/km in a 1.38 to 1.64 μm, and low confinement losses less than 10-3 dB/km in the entire band of interest.

Keywords: Finite difference modeling, group velocity dispersion, optical fiber design, photonic crystal fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
376 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Muhammad Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: Thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7708
375 Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite

Authors: Dattaji K. Shinde, Ajit D. Kelkar

Abstract:

Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs.

Keywords: Electrospun nanofibers, H-VARTM, Interlaminar shear strength (ILSS), Matrix modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3194
374 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: Composite, elastic behaviour, footbed, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
373 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites

Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran

Abstract:

Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.

Keywords: Flexural properties, glutarylation, glutaric anhydride, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645