Search results for: Second critical rotor speed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2820

Search results for: Second critical rotor speed

2610 Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control

Authors: N. H. Mvungi

Abstract:

Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.

Keywords: Sensorless, SR motor, saturation effects, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
2609 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri

Abstract:

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Keywords: Motor drive, sensorless control, adaptive observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
2608 Fuzzy Clustering of Locations for Degree of Accident Proneness based on Vehicle User Perceptions

Authors: Jayanth Jacob, C. V. Hariharakrishnan, Suganthi L.

Abstract:

The rapid urbanization of cities has a bane in the form road accidents that cause extensive damage to life and limbs. A number of location based factors are enablers of road accidents in the city. The speed of travel of vehicles is non-uniform among locations within a city. In this study, the perception of vehicle users is captured on a 10-point rating scale regarding the degree of variation in speed of travel at chosen locations in the city. The average rating is used to cluster locations using fuzzy c-means clustering and classify them as low, moderate and high speed of travel locations. The high speed of travel locations can be classified proactively to ensure that accidents do not occur due to the speeding of vehicles at such locations. The advantage of fuzzy c-means clustering is that a location may be a part of more than one cluster to a varying degree and this gives a better picture about the location with respect to the characteristic (speed of travel) being studied.

Keywords: C-means clustering, Location Specific, Road Accidents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
2607 Wireless Communicated Smart Wind Sensor

Authors: Zdenek Bohuslavek

Abstract:

Development of microprocessor controlled sensor for measurement of wind speed and direction is the aim of this study. Electrical circuits and software were developed to the existing electromechanical part of the sensor TM-W2 becoming the properties of so-called smart sensor. The measured data about wind speed (sensitivity 0.01 m/s) and direction (0-360° by step 10°) are transmitted as 16-bit information. The connection between sensor and control unit is realized by radio communication (FM 433 MHz). Transition range is 220 m if used Quad type antenna. This concept provides substitution of actual cable systems by wireless ones.

Keywords: smart wind sensor, anemometer, wind speed, wireless communication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
2606 Impact of Viscous and Heat Relaxation Loss on the Critical Temperature Gradients of Thermoacoustic Stacks

Authors: Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil

Abstract:

A stack with a small critical temperature gradient is desirable for a standing wave thermoacoustic engine to obtain a low onset temperature difference (the minimum temperature difference to start engine-s self-oscillation). The viscous and heat relaxation loss in the stack determines the critical temperature gradient. In this work, a dimensionless critical temperature gradient factor is obtained based on the linear thermoacoustic theory. It is indicated that the impedance determines the proportion between the viscous loss, heat relaxation losses and the power production from the heat energy. It reveals the effects of the channel dimensions, geometrical configuration and the local acoustic impedance on the critical temperature gradient in stacks. The numerical analysis shows that there exists a possible optimum combination of these parameters which leads to the lowest critical temperature gradient. Furthermore, several different geometries have been tested and compared numerically.

Keywords: Critical temperature gradient, heat relaxation, stack, viscous effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
2605 Effect of Preloading on the Contact Stress Distribution of a Dovetail Interface

Authors: Kaliyaperumal Anandavel, Raghu V. Prakash, Antonio Davis

Abstract:

This paper presents the influence of preloading on a) the contact tractions, b) slip levels and c) stresses at the dovetail blade-disc interface of an aero-engine through a three-dimensional (3D) finite element (FE) modeling and analysis. The preloading is applied by an interference fit at the dovetail interface and the bulk loading is applied through the rotational speed of rotor. Preloading at the dovetail interface reduces the peak contact pressure developed due to bulk loading up to 35%, and reduces the peak contact pressure and stress difference between top and bottom contact edges. Increasing the level of preloading reduces the cyclic stress amplitude at the interface up to certain values of preload and as a consequence, an improvement in fatigue life could be expected. Fretting damage, due to vibration and wind milling effect during engine ground condition, can be minimized by preloading the dovetail interface.

Keywords: Dovetail interface, Preload, Interference fit, ContactStress, Fretting Fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
2604 Pavement Roughness Prediction Systems: A Bump Integrator Approach

Authors: Manish Pal, Rumi Sutradhar

Abstract:

Pavement surface unevenness plays a pivotal role on roughness index of road which affects on riding comfort ability. Comfort ability refers to the degree of protection offered to vehicle occupants from uneven elements in the road surface. So, it is preferable to have a lower roughness index value for a better riding quality of road users. Roughness is generally defined as an expression of irregularities in the pavement surface which can be measured using different equipments like MERLIN, Bump integrator, Profilometer etc. Among them Bump Integrator is quite simple and less time consuming in case of long road sections. A case study is conducted on low volume roads in West District in Tripura to determine roughness index (RI) using Bump Integrator at the standard speed of 32 km/h. But it becomes too tough to maintain the requisite standard speed throughout the road section. The speed of Bump Integrator (BI) has to lower or higher in some distinctive situations. So, it becomes necessary to convert these roughness index values of other speeds to the standard speed of 32 km/h. This paper highlights on that roughness index conversional model. Using SPSS (Statistical Package of Social Sciences) software a generalized equation is derived among the RI value at standard speed of 32 km/h and RI value at other speed conditions.

Keywords: Bump Integrator, Pavement Distresses, Roughness Index, SPSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6627
2603 Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage

Authors: M. O. Ale, S. I. Manuwa, O. J. Olukunle, T. Ewetumo

Abstract:

Five varying speeds of 1.5, 1.8, 2.1, 2.3 and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under pneumatic wheel and rigid wheel usage on a well-prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught in which draught ranging between 24.91 and 744.44 N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with the less value of draught requires less energy requirement for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels.

Keywords: Cassava planter, planting, forward speed, draught, wheel type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74
2602 Predicting Crack Initiation Due to Ratchetting in Rail Heads Using Critical Element Analysis

Authors: I. U. Wickramasinghe, D. J. Hargreaves, D. V. De Pellegrin

Abstract:

This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.

Keywords: Critical element analysis, finite element modeling (FEM), wheel/rail contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
2601 Induction Motor Speed Control Using Fuzzy Logic Controller

Authors: V. Chitra, R. S. Prabhakar

Abstract:

Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. The fuzzy logic controller is implemented using the Field Oriented Control technique as it provides better control of motor torque with high dynamic performance. The motor model is designed and membership functions are chosen according to the parameters of the motor model. The simulated design is tested using various tool boxes in MATLAB. The result concludes that the efficiency and reliability of the proposed speed controller is good.

Keywords: Induction motor, Field Oriented Control, Fuzzy logic controller, Maximum torque, Membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
2600 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2599 Modern Pedagogy Techniques for DC Motor Speed Control

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.

Keywords: Pedagogy techniques, speed control, virtual environment, DC motor, field control, voltage control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
2598 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
2597 Preliminary Assessment of Feasibility of a Wind Energy Conversion System for a Martian Probe or Surface Rover

Authors: M. Raciti Castelli, M. Cescon, E. Benini

Abstract:

Nuclear energy sources have been widely used in the past decades in order to power spacecraft subsystems. Nevertheless, their use has attracted controversy because of the risk of harmful material released into the atmosphere if an accident were to occur during the launch phase of the mission, leading to the general adoption of photovoltaic systems. As compared to solar cells, wind turbines have a great advantage on Mars, as they can continuously produce power both during dust storms and at night-time: this paper focuses on the potential of a wind energy conversion system (WECS) considering the atmospheric conditions on Mars. Wind potential on Martian surface has been estimated, as well as the average energy requirements of a Martian probe or surface rover. Finally, the expected daily energy output of the WECS has been computed on the basis of both the swept area of the rotor and the equivalent wind speed at the landing site.

Keywords: Wind turbine, wind potential, Mars, probe, surface rover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
2596 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System

Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee

Abstract:

Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.

Keywords: Rotating shaft, flexible blades, centrifugal stiffening, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
2595 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun

Abstract:

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
2594 Productive Design and Calculation of Intermittent Mechanisms with Radial Parallel Cams

Authors: Pavel Dostrašil, Petr Jirásko

Abstract:

The paper deals with the kinematics and automated calculation of intermittent mechanisms with radial cams. Currently, electronic cams are increasingly applied in the drives of working link mechanisms. Despite a huge advantage of electronic cams in their reprogrammability or instantaneous change of displacement diagrams, conventional cam mechanisms have an irreplaceable role in production and handling machines. With high frequency of working cycle periods, the dynamic load of the proper servomotor rotor increases and efficiency of electronic cams strongly decreases. Though conventional intermittent mechanisms with radial cams are representatives of fixed automation, they have distinct advantages in their high speed (high dynamics), positional accuracy and relatively easy manufacture. We try to remove the disadvantage of firm displacement diagram by reducing costs for simple design and automated calculation that leads reliably to high-quality and inexpensive manufacture.

Keywords: Cam mechanism, displacement diagram, intermittentmechanism, radial parallel cam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
2593 Evaluation of Torsional Efforts on Thermal Machines Shaft with Gas Turbine resulting of Automatic Reclosing

Authors: Alvaro J. P. Ramos, Wellington S. Mota, Yendys S. Dantas

Abstract:

This paper analyses the torsional efforts in gas turbine-generator shafts caused by high speed automatic reclosing of transmission lines. This issue is especially important for cases of three phase short circuit and unsuccessful reclosure of lines in the vicinity of the thermal plant. The analysis was carried out for the thermal plant TERMOPERNAMBUCO located on Northeast region of Brazil. It is shown that stress level caused by lines unsuccessful reclosing can be several times higher than terminal three-phase short circuit. Simulations were carried out with detailed shaft torsional model provided by machine manufacturer and with the “Alternative Transient Program – ATP" program [1]. Unsuccessful three phase reclosing for selected lines in the area closed to the plant indicated most critical cases. Also, reclosing first the terminal next to the gas turbine gererator will lead also to the most critical condition. Considering that the values of transient torques are very sensible to the instant of reclosing, simulation of unsuccessful reclosing with statistics ATP switch were carried out for determination of most critical transient torques for each section of the generator turbine shaft.

Keywords: Torsional Efforts, Thermal Machine, GasTurbine, Automatic Reclosing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
2592 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors

Authors: Ibrahim Beldjilali, Adel Ghenaiet

Abstract:

The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.

Keywords: Aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
2591 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System

Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam

Abstract:

The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.

Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2590 Development of Machinable Ellipses by NURBS Curves

Authors: Yuan L. Lai, Jian H. Chen, Jui P. Hung

Abstract:

Owning to the high-speed feed rate and ultra spindle speed have been used in modern machine tools, the tool-path generation plays a key role in the successful application of a High-Speed Machining (HSM) system. Because of its importance in both high-speed machining and tool-path generation, approximating a contour by NURBS format is a potential function in CAD/CAM/CNC systems. It is much more convenient to represent an ellipse by parametric form than to connect points laboriously determined in a CNC system. A new approximating method based on optimum processes and NURBS curves of any degree to the ellipses is presented in this study. Such operations can be the foundation of tool-radius compensation interpolator of NURBS curves in CNC system. All operating processes for a CAD tool is presented and demonstrated by practical models.

Keywords: Ellipse, Approximation, NURBS, Optimum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
2589 The Spectral Power Amplification on the Regular Lattices

Authors: Kotbi Lakhdar, Hachi Mostefa

Abstract:

We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.

Keywords: Ising model, phase transitions, critical temperature, critical exponent, spectral power amplification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
2588 An Evaluation on Fixed Wing and Multi-Rotor UAV Images Using Photogrammetric Image Processing

Authors: Khairul Nizam Tahar, Anuar Ahmad

Abstract:

This paper has introduced a slope photogrammetric mapping using unmanned aerial vehicle. There are two units of UAV has been used in this study; namely; fixed wing and multi-rotor. Both UAVs were used to capture images at the study area. A consumer digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. The objectives of this study are to obtain three dimensional coordinates of slope area and to determine the accuracy of photogrammetric product produced from both UAVs. Several control points and checkpoints were established Real Time Kinematic Global Positioning System (RTK-GPS) in the study area. All acquired images from both UAVs went through all photogrammetric processes such as interior orientation, exterior orientation, aerial triangulation and bundle adjustment using photogrammetric software. Two primary results were produced in this study; namely; digital elevation model and digital orthophoto. Based on results, UAV system can be used to mapping slope area especially for limited budget and time constraints project.

Keywords: Slope mapping, 3D, DEM, UAV, Photogrammetry, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6034
2587 Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method

Authors: H. Ghanbari, H. Nikbakht, A. Zahedi, M. Ghanbari

Abstract:

This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.

Keywords: Wind Turbine, Simulink, Reference Tracking Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
2586 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
2585 State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness

Authors: Dileep Malkhede, Bhartendu Seth

Abstract:

In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.

Keywords: Diesel engine model, Engine speed control, State feedback controller, Controller robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
2584 Distributed Architecture of an Autonomous Four Rotor Mini-Rotorcraft based on Multi-Agent System

Authors: H. Ifassiouen, H. Medromi, N. E. Radhy

Abstract:

In this paper, we present the recently implemented approach allowing dynamics systems to plan its actions, taking into account the environment perception changes, and to control their execution when uncertainty and incomplete knowledge are the major characteristics of the situated environment [1],[2],[3],[4]. The control distributed architecture has three modules and the approach is related to hierarchical planning: the plan produced by the planner is further refined at the control layer that in turn supervises its execution by a functional level. We propose a new intelligent distributed architecture constituted by: Multi-Agent subsystem of the sensor, of the interpretation and representation of environment [9], of the dynamic localization and of the action. We tested this distributed architecture with dynamic system in the known environment. The autonomous for Rotor Mini Rotorcraft task is described by the primitive actions. The distributed controlbased on multi-agent system is in charge of achieving each task in the best possible way taking into account the context and sensory feedback.

Keywords: Autonomous four rotors helicopter, Control system, Hierarchical planning, Intelligent Distributed Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2583 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by FSW

Authors: Aboozar Aghaei, Kamran Dehghani

Abstract:

In the present work, the dissimilar Monel400 and SS316 were joined by Friction Stir Welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 mm/min and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimens was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using a Scanning Electron Microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.

Keywords: Frictions stir welding, FSW, stainless steel, Monel400, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43
2582 Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Authors: M. Azadbakht, Y. Fadakar

Abstract:

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Keywords: Rotary injector pump, MF285 tractor, finite element, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
2581 Frequency Regulation Support by Variable-Speed Wind Turbines and SMES

Authors: M. Saleh, H. Bevrani

Abstract:

This paper quantifies the impact of providing a shortterm excess active power support of a variable speed wind turbine (VSWT) and effect of super magnetic energy storage (SMES) unit on frequency control, particularly temporary minimum frequency (TMF) term. To demonstrate the effect of these factors on the power system frequency, a three-area power system is considered as a test system.

Keywords: Frequency regulation, inertia, primary frequencycontrol, rotational energy, variable speed wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167