Search results for: S. S. Rustamov
2 The Impact of Social Stratification to the Phenomenon of “Terrorism“
Authors: Rustamov Nasim, Roostamov Yunusbek
Abstract:
In this work social stratification is considered as one of significant factor which generate the phenomena “terrorism” and it puts the accent on correlation connection between them, with the object of creation info-logical model generation of phenomena of “terrorism” based on stratification process.
Keywords: Social stratification, stratification process, generation of phenomena “terrorism”, conceptions – “terror”, “terrorize” and “terrorism”, info-logical model of phenomena of “terrorism”.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42411 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov
Abstract:
Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914