Search results for: S. K. Acharya
6 Detecting the Edge of Multiple Images in Parallel
Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar
Abstract:
Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel. The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. Message Passing Interface (MPI) and Open Computing Language (OpenCL) is used to achieve task and pixel level parallelism respectively.Keywords: Edge detection, multicore, GPU, openCL, MPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23395 Improved C-Fuzzy Decision Tree for Intrusion Detection
Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15754 Experimental Investigation of Karanja Oil as a Fuel for Diesel Engine-Using Shell and Tube Heat Exchanger
Authors: Nabnit Panigrahi, M. K. Mohanty, S. K. Acharya, S. R Mishra, R. C. Mohanty
Abstract:
This paper presents experimental investigation carried out on an unmodified four stroke diesel engine running with preheated straight vegetable oil (SVO) of Karanja. The viscosity of straight karanja oil was reduced by preheating the oil up to 1600C under different load condition. The preheating was done with the help of a Shell and Tube heat exchanger equipment without using any external power source. The heat exchanger was designed in the lab and the heating source was by waste exhaust gas from engine. The experimental results data were analyzed by using 20% blends of svo of Karanja with 80% diesel by volume and 100% preheated svo of karanja for various parameters like specific fuel consumption, brake thermal efficiency and emission of exhaust gas like CO, CO2, HC and NOx. The results indicated that by using straight karanja oil, the emission parameter increases as compared to diesel but regarding engine performance it was found to be very close to that of diesel. All total it can be a replacement of diesel with a small efficiency drop.
Keywords: Karanja oil, Performance analysis, Shell &Tube heat exchanger, SVO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30573 Entrepreneurship Skills Acquisition through Education: Impact of the Nurturance of Knowledge, Skills, and Attitude on New Venture Creation
Authors: Satya Ranjan Acharya, Yamini Chandra
Abstract:
Entrepreneurship through higher education has taken a paradigm shift from traditional classroom lecture series method to a modern approach, which lay emphasis on nurturing competencies, enhancing knowledge, skills, attitudes/abilities (KSA), which has positive impact on the development of core capabilities. The present paper was focused on the analysis of entrepreneurship education as a pedagogical intervention for the post-graduate program offered at the Entrepreneurship Development Institute of India, Gujarat, India. The study is focused on a model with special emphasis on developing KSA and its effect on nurturing entrepreneurial spirit within students. The findings represent demographic and thematic assessment of the implemented pedagogical model with an outcome of students choosing a career in new venture creation or growth/diversification of family owned businesses. This research will be helpful for academicians, research scholars, potential entrepreneurs, ecosystem enablers and students to infer the effectiveness of nurturing entrepreneurial skills and bringing more changes in personal attitudes by the way of enhancing the knowledge and skills required for the execution of an entrepreneurial career. This research is original in nature as it provides an in-depth insight into an implemented model of curriculum, focused on the development and nurturance of basic skills and its impact on the career choice of students.Keywords: Attitude, entrepreneurship education, knowledge, new venture creation, pedagogical intervention, skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18542 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739