Search results for: S. Bouharati
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: S. Bouharati

4 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
3 Use Cuticular Hydrocarbons as Chemotaxonomic of The Pamphagidae Pamphagus elephas (Insecta, Orthoptera) of Algeria

Authors: M. Bounechada, F. Benia, M. Aiouaz, S. Bouharati, N. Djirar, H. Benamrani

Abstract:

The cuticular hydrocarbons of Pamphagus elephas (Orthoptera: Pamphagidae) has been analysed by gas chromatography and by combined gas chromatograph-mass spectrometry. The following hydrocarbon classes have been identified in insect cuticular hydrocarbons are: n-alkanes and methylalkanes comprising Monomethyl-, dimethyl-and trimethylalkanes. Sexual dimorphism is observed in long chain alkanes (C24-C36) present on male and female. The cuticulars hydrocarbons of P.elephas ranged from 24 to 36 carbons and incluted n-alkanes, Dimethylalkanes and Trimethylalkanes. nalkanes represented by (C24-C36,72,7% on male and 79,2% on female), internally branched Monomethylalkanes identified were (C25, C30-C32,C35-C37;11% on male and 9,4% on female), Dimethylalkanes detected are (C31-C32, C36; 2,2% on male and 2,06% on female) and Trimethylalkanes detected are (C32, C36; 3,1% on male and 4, 97 on female). Larvae male and female (stage 7) showed the same quality of n-alkanes observed in adults. However a difference quantity is noted.

Keywords: Cuticular hydrocarbons, Gas chromatography, Mass spectrometry, Pamphagus elephas, , Sexual dimorphism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
2 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: Climate changes, dry soil, Phytopathogenicity, Predictive model, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
1 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi

Abstract:

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890