Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 196

Search results for: Quantum Computation

106 Robot Vision Application based on Complex 3D Pose Computation

Authors: F. Rotaru, S. Bejinariu, C. D. Niţâ, R. Luca, I. Pâvâloi, C. Lazâr

Abstract:

The paper presents a technique suitable in robot vision applications where it is not possible to establish the object position from one view. Usually, one view pose calculation methods are based on the correspondence of image features established at a training step and exactly the same image features extracted at the execution step, for a different object pose. When such a correspondence is not feasible because of the lack of specific features a new method is proposed. In the first step the method computes from two views the 3D pose of feature points. Subsequently, using a registration algorithm, the set of 3D feature points extracted at the execution phase is aligned with the set of 3D feature points extracted at the training phase. The result is a Euclidean transform which have to be used by robot head for reorientation at execution step.

Keywords: features correspondence, registration algorithm, robot vision, triangulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
105 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software

Authors: Marine Segui, Ruxandra Mihaela Botez

Abstract:

OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.

Keywords: Aerodynamic, coefficient, cruise, improving, longitudinal, OpenVSP, solver, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
104 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown.

An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
103 Aqueous Ranitidine Elimination in Photolytic Processes

Authors: Javier Rivas, Olga Gimeno, Maria Carbajo, Teresa Borralho

Abstract:

The elimination of ranitidine (a pharmaceutical compound) has been carried out in the presence of UV-C radiation. After some preliminary experiments, it has been experienced the no influence of the gas nature (air or oxygen) bubbled in photolytic experiments. From simple photolysis experiments the quantum yield of this compound has been determined. Two photolytic approximation has been used, the linear source emission in parallel planes and the point source emission in spherical planes. The quantum yield obtained was in the proximity of 0.05 mol Einstein-1 regardless of the method used. Addition of free radical promoters (hydrogen peroxide) increases the ranitidine removal rate while the use of photocatalysts (TiO2) negatively affects the process.

Keywords: Quantum yield, photolysis, ranitidine, watertreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
102 On the Need to have an Additional Methodology for the Psychological Product Measurement and Evaluation

Authors: Corneliu Sofronie, Roxana Zubcov

Abstract:

Cognitive Science appeared about 40 years ago, subsequent to the challenge of the Artificial Intelligence, as common territory for several scientific disciplines such as: IT, mathematics, psychology, neurology, philosophy, sociology, and linguistics. The new born science was justified by the complexity of the problems related to the human knowledge on one hand, and on the other by the fact that none of the above mentioned sciences could explain alone the mental phenomena. Based on the data supplied by the experimental sciences such as psychology or neurology, models of the human mind operation are built in the cognition science. These models are implemented in computer programs and/or electronic circuits (specific to the artificial intelligence) – cognitive systems – whose competences and performances are compared to the human ones, leading to the psychology and neurology data reinterpretation, respectively to the construction of new models. During these processes if psychology provides the experimental basis, philosophy and mathematics provides the abstraction level utterly necessary for the intermission of the mentioned sciences. The ongoing general problematic of the cognitive approach provides two important types of approach: the computational one, starting from the idea that the mental phenomenon can be reduced to 1 and 0 type calculus operations, and the connection one that considers the thinking products as being a result of the interaction between all the composing (included) systems. In the field of psychology measurements in the computational register use classical inquiries and psychometrical tests, generally based on calculus methods. Deeming things from both sides that are representing the cognitive science, we can notice a gap in psychological product measurement possibilities, regarded from the connectionist perspective, that requires the unitary understanding of the quality – quantity whole. In such approach measurement by calculus proves to be inefficient. Our researches, deployed for longer than 20 years, lead to the conclusion that measuring by forms properly fits to the connectionism laws and principles.

Keywords: complementary methodology, connection approach, networks without scaling, quantum psychology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
101 A New Ridge Orientation based Method of Computation for Feature Extraction from Fingerprint Images

Authors: Jayadevan R., Jayant V. Kulkarni, Suresh N. Mali, Hemant K. Abhyankar

Abstract:

An important step in studying the statistics of fingerprint minutia features is to reliably extract minutia features from the fingerprint images. A new reliable method of computation for minutiae feature extraction from fingerprint images is presented. A fingerprint image is treated as a textured image. An orientation flow field of the ridges is computed for the fingerprint image. To accurately locate ridges, a new ridge orientation based computation method is proposed. After ridge segmentation a new method of computation is proposed for smoothing the ridges. The ridge skeleton image is obtained and then smoothed using morphological operators to detect the features. A post processing stage eliminates a large number of false features from the detected set of minutiae features. The detected features are observed to be reliable and accurate.

Keywords: Minutia, orientation field, ridge segmentation, textured image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
100 Auto-Parking System via Intelligent Computation Intelligence

Authors: Y. J. Huang, C. H. Chang

Abstract:

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Keywords: Auto-parking system, Fuzzy control, Neural network, Robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
99 Enhanced Shell Sorting Algorithm

Authors: Basit Shahzad, Muhammad Tanvir Afzal

Abstract:

Many algorithms are available for sorting the unordered elements. Most important of them are Bubble sort, Heap sort, Insertion sort and Shell sort. These algorithms have their own pros and cons. Shell Sort which is an enhanced version of insertion sort, reduces the number of swaps of the elements being sorted to minimize the complexity and time as compared to insertion sort. Shell sort improves the efficiency of insertion sort by quickly shifting values to their destination. Average sort time is O(n1.25), while worst-case time is O(n1.5). It performs certain iterations. In each iteration it swaps some elements of the array in such a way that in last iteration when the value of h is one, the number of swaps will be reduced. Donald L. Shell invented a formula to calculate the value of ?h?. this work focuses to identify some improvement in the conventional Shell sort algorithm. ''Enhanced Shell Sort algorithm'' is an improvement in the algorithm to calculate the value of 'h'. It has been observed that by applying this algorithm, number of swaps can be reduced up to 60 percent as compared to the existing algorithm. In some other cases this enhancement was found faster than the existing algorithms available.

Keywords: Algorithm, Computation, Shell, Sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
98 Evaluating Performance of Quality-of-Service Routing in Large Networks

Authors: V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, Praveen Dwarakanath Prabhu

Abstract:

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

Keywords: QoS, Link-State Routing, Dijkstra, Path Selection, Path Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
97 Sensitivity Computations of Time Relaxation Model with an Application in Cavity Computation

Authors: Monika Neda, Elena Nikonova

Abstract:

We present a numerical study of the sensitivity of the so called time relaxation family of models of fluid motion with respect to the time relaxation parameter χ on the two dimensional cavity problem. The goal of the study is to compute and compare the sensitivity of the model using finite difference method (FFD) and sensitivity equation method (SEM).

Keywords: Sensitivity, time relaxation, deconvolution, Navier- Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
96 Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application

Authors: Irakli V. Gugushvili, Nickolay M. Evstigneev

Abstract:

Numerical integration of initial boundary problem for advection equation in 3 ℜ is considered. The method used is  conditionally stable semi-Lagrangian advection scheme with high order interpolation on unstructured mesh. In order to increase time step integration the BFECC method with limiter TVD correction is used. The method is adopted on parallel graphic processor unit environment using NVIDIA CUDA and applied in Navier-Stokes solver. It is shown that the calculation on NVIDIA GeForce 8800  GPU is 184 times faster than on one processor AMDX2 4800+ CPU. The method is extended to the incompressible fluid dynamics solver. Flow over a Cylinder for 3D case is compared to the experimental data.

Keywords: Advection equations, CUDA technology, Flow overthe 3D Cylinder, Incompressible Pressure Projection Solver, Parallel computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
95 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, Neural networks, Local cost computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
94 Pattern Recognition of Biological Signals

Authors: Paulo S. Caparelli, Eduardo Costa, Alexsandro S. Soares, Hipolito Barbosa

Abstract:

This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.

Keywords: Pattern recognition, evolutionary computation, biological signal, functional programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
93 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: Numerical computation, element-free Galerkin, moving least squares, meshless methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
92 Extending the Quantum Entropy to Multidimensional Signal Processing

Authors: Youssef Khmou, Said Safi, Miloud Frikel

Abstract:

This paper treats different aspects of entropy measure in classical information theory and statistical quantum mechanics, it presents the possibility of extending the definition of Von Neumann entropy to image and array processing. In the first part, we generalize the quantum entropy using singular values of arbitrary rectangular matrices to measure the randomness and the quality of denoising operation, this new definition of entropy can be implemented to compare the performance analysis of filtering methods. In the second part, we apply the concept of pure state in quantum formalism to generalize the maximum entropy method for narrowband and farfield source localization problem. Several computer simulation results are illustrated to demonstrate the effectiveness of the proposed techniques.

Keywords: Von Neumann entropy, Filtering, array, DoA, Maximum Entropy Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
91 Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Authors: Z. Gholamzadeh, A. Zali, S. A. H. Feghhi, C. Tenreiro, Y. Kadi, M. Rezazadeh, M. Aref

Abstract:

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.

Keywords: MCNP-4C, Reactor core, Multiplication factor, Reactivity, Peaking factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
90 Open Problems on Zeros of Analytic Functions in Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on basic problems about the zeros of analytic theta functions. A brief introduction to analytic representation of finite quantum systems is given. The zeros of this function and there evolution time are discussed. Two open problems are introduced. The first problem discusses the cases when the zeros follow the same path. As the basis change the quantum state |f transforms into different quantum state. The second problem is to define a map between two toruses where the domain and the range of this map are the analytic functions on toruses.

Keywords: open problems, constraint, change of basis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
89 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output

Authors: Barenten Suciu

Abstract:

In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.

Keywords: Mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
88 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

Authors: Ashutosh Kumar Singh, Anand Mohan

Abstract:

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
87 Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.

Keywords: Design of logic circuit, evolutionary computation, evolvable hardware, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
86 Algebraic Quantum Error Correction Codes

Authors: Ming-Chung Tsai, Kuan-Peng Chen, Zheng-Yao

Abstract:

A systematic and exhaustive method based on the group structure of a unitary Lie algebra is proposed to generate an enormous number of quantum codes. With respect to the algebraic structure, the orthogonality condition, which is the central rule of generating quantum codes, is proved to be fully equivalent to the distinguishability of the elements in this structure. In addition, four types of quantum codes are classified according to the relation of the codeword operators and some initial quantum state. By linking the unitary Lie algebra with the additive group, the classical correspondences of some of these quantum codes can be rendered.

Keywords: Quotient-Algebra Partition, Codeword Spinors, Basis Codewords, Syndrome Spinors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
85 Moment Invariants in Image Analysis

Authors: Jan Flusser

Abstract:

This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a general theory how to construct these invariants and show also a few of them in explicit forms. We review efficient numerical algorithms that can be used for moment computation and demonstrate practical examples of using moment invariants in real applications.

Keywords: Object recognition, degraded images, moments, moment invariants, geometric invariants, invariants to convolution, moment computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
84 Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures

Authors: Hema Sandhya Jagarlamudi, Mousumi Saha, Pavan Kumar Jagarlamudi

Abstract:

The use of Quantum dots is a promising emerging Technology for implementing digital system at the nano level. It is effecient for attractive features such as faster speed , smaller size and low power consumption than transistor technology. In this paper, various Combinational and sequential logical structures - HALF ADDER, SR Latch and Flip-Flop, D Flip-Flop preceding NAND, NOR, XOR,XNOR are discussed based on QCA design, with comparatively less number of cells and area. By applying these layouts, the hardware requirements for a QCA design can be reduced. These structures are designed and simulated using QCA Designer Tool. By taking full advantage of the unique features of this technology, we are able to create complete circuits on a single layer of QCA. Such Devices are expected to function with ultra low power Consumption and very high speeds.

Keywords: QCA, QCA Designer, Clock, Majority Gate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
83 Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes

Authors: T. Hashimoto, N. Miki, H. Maki

Abstract:

We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.

Keywords: NbN nanowire, carbon nanotube, quantum size effect, Josephson junction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
82 An Accurate Computation of Block Hybrid Method for Solving Stiff Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

In this paper, self-starting block hybrid method of order (5,5,5,5)T is proposed for the solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on stiff ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
81 Bit Model Based Key Management Scheme for Secure Group Communication

Authors: R. Varalakshmi

Abstract:

For the last decade, researchers have started to focus their interest on Multicast Group Key Management Framework. The central research challenge is secure and efficient group key distribution. The present paper is based on the Bit model based Secure Multicast Group key distribution scheme using the most popular absolute encoder output type code named Gray Code. The focus is of two folds. The first fold deals with the reduction of computation complexity which is achieved in our scheme by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, an O(1) time algorithm to multiply two N-bit binary numbers which could be used in an N x N bit-model of reconfigurable mesh is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution schemes is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly. Our proposed algorithm is suitable for high performance computing environment.

Keywords: Multicast Group key distribution, Bit model, Integer Multiplications, reconfigurable mesh, optimal algorithm, Gray Code, Computation Complexity, Storage Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
80 Recent Advances on Computational Proteomics

Authors: Sérgio F. Sousa, Nuno M. F. S. A. Cerqueira, Marta A. S. Perez, Irina S. Moreira, António J. M.Ribeiro, Ana R. A. P. Neves, Maria J. Ramos, Pedro A. Fernandes

Abstract:

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

Keywords: Enzyme, Molecular Dynamics, Protein, Quantum Mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
79 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. H. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: Statistical mechanics, Nonlocal separable potential, three-body interaction, Faddeev equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
78 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method

Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei

Abstract:

As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.

Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
77 Performance Evaluation of a Limited Round-Robin System

Authors: Yoshiaki Shikata

Abstract:

Performance of a limited Round-Robin (RR) rule is studied in order to clarify the characteristics of a realistic sharing model of a processor. Under the limited RR rule, the processor allocates to each request a fixed amount of time, called a quantum, in a fixed order. The sum of the requests being allocated these quanta is kept below a fixed value. Arriving requests that cannot be allocated quanta because of such a restriction are queued or rejected. Practical performance measures, such as the relationship between the mean sojourn time, the mean number of requests, or the loss probability and the quantum size are evaluated via simulation. In the evaluation, the requested service time of an arriving request is converted into a quantum number. One of these quanta is included in an RR cycle, which means a series of quanta allocated to each request in a fixed order. The service time of the arriving request can be evaluated using the number of RR cycles required to complete the service, the number of requests receiving service, and the quantum size. Then an increase or decrease in the number of quanta that are necessary before service is completed is reevaluated at the arrival or departure of other requests. Tracking these events and calculations enables us to analyze the performance of our limited RR rule. In particular, we obtain the most suitable quantum size, which minimizes the mean sojourn time, for the case in which the switching time for each quantum is considered.

Keywords: Limited RR rule, quantum, processor sharing, sojourn time, performance measures, simulation, loss probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF