**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**5

# Search results for: Quantum Computation

##### 5 Quantum Computation using Two Component Bose-Einstein Condensates

**Authors:**
Tim Byrnes

**Abstract:**

Quantum computation using qubits made of two component Bose-Einstein condensates (BECs) is analyzed. We construct a general framework for quantum algorithms to be executed using the collective states of the BECs. The use of BECs allows for an increase of energy scales via bosonic enhancement, resulting in two qubit gate operations that can be performed at a time reduced by a factor of N, where N is the number of bosons per qubit. We illustrate the scheme by an application to Deutsch-s and Grover-s algorithms, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.

**Keywords:**
Quantum,
computing,
information,
Bose-Einstein condensates,
macroscopic.

##### 4 Network of Coupled Stochastic Oscillators and One-way Quantum Computations

**Authors:**
Eugene Grichuk,
Margarita Kuzmina,
Eduard Manykin

**Abstract:**

**Keywords:**
network of stochastic oscillators,
one-way quantumcomputations,
a beam of polarized light.

##### 3 Entanglement-based Quantum Computing by Diagrams of States

**Authors:**
Sara Felloni,
Giuliano Strini

**Abstract:**

**Keywords:**
Diagrams of states,
entanglement,
quantum circuits,
quantum information.

##### 2 A Post Processing Method for Quantum Prime Factorization Algorithm based on Randomized Approach

**Authors:**
Mir Shahriar Emami,
Mohammad Reza Meybodi

**Abstract:**

**Keywords:**
Quantum Prime Factorization,
RandomizedAlgorithms,
Quantum Computer Simulation,
Quantum Computation.

##### 1 A Programmerâ€™s Survey of the Quantum Computing Paradigm

**Authors:**
Philippe Jorrand

**Abstract:**

Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.

**Keywords:**
Quantum information processing,
quantum algorithms,
quantum programming languages.