Search results for: Quadratic eigenvalue problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3694

Search results for: Quadratic eigenvalue problem

3424 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems

Authors: I. A. Farhat

Abstract:

The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.

Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212
3423 Solving of the Fourth Order Differential Equations with the Neumann Problem

Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni

Abstract:

In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
3422 Research on Self-Perceptions of Pre-Service Turkish Language Teachers in Turkey with Regard to Problem Solving Skills

Authors: Canan Aslan

Abstract:

The aim of this research is to determine how preservice Turkish teachers perceive themselves in terms of problem solving skills. Students attending Department of Turkish Language Teaching of Gazi University Education Faculty in 2005-2006 academic year constitute the study group (n= 270) of this research in which survey model was utilized. Data were obtained by Problem Solving Inventory developed by Heppner & Peterson and Personal Information Form. Within the settings of this research, Cronbach Alpha reliability coefficient of the scale was found as .87. Besides, reliability coefficient obtained by split-half technique which splits odd and even numbered items of the scale was found as r=.81 (Split- Half Reliability). The findings of the research revealed that preservice Turkish teachers were sufficiently qualified on the subject of problem solving skills and statistical significance was found in favor of male candidates in terms of “gender" variable. According to the “grade" variable, statistical significance was found in favor of 4th graders.

Keywords: Problem Solving, problem solving skills, PreserviceTurkish Language Teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
3421 Multiobjective Optimization Solution for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated SortingGenetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
3420 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem

Authors: Danping Lin, C.K.M. Lee

Abstract:

Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespan

Keywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
3419 Positive Solutions for Discrete Third-order Three-point Boundary Value Problem

Authors: Benshi Zhu

Abstract:

In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method.

Keywords: Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
3418 An Iterative Updating Method for Damped Gyroscopic Systems

Authors: Yongxin Yuan

Abstract:

The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n, Λ = diag{λ1, ··· , λp} ∈ Cp×p, X = [x1, ··· , xp] ∈ Cn×p, where p<n and both Λ and X are closed under complex conjugation in the sense that λ2j = λ¯2j−1 ∈ C, x2j = ¯x2j−1 ∈ Cn for j = 1, ··· , l, and λk ∈ R, xk ∈ Rn for k = 2l + 1, ··· , p, find real-valued symmetric matrices D,K and a real-valued skew-symmetric matrix G (that is, GT = −G) such that MaXΛ2 + (D + G)XΛ + KX = 0. Problem II: Given real-valued symmetric matrices Da, Ka ∈ Rn×n and a real-valued skew-symmetric matrix Ga, find (D, ˆ G, ˆ Kˆ ) ∈ SE such that Dˆ −Da2+Gˆ−Ga2+Kˆ −Ka2 = min(D,G,K)∈SE (D− Da2 + G − Ga2 + K − Ka2), where SE is the solution set of Problem I and · is the Frobenius norm. This paper presents an iterative algorithm to solve Problem I and Problem II. By using the proposed iterative method, a solution of Problem I can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum Frobenius norm solution of Problem I can be obtained by choosing a special kind of initial matrices. Moreover, the optimal approximation solution (D, ˆ G, ˆ Kˆ ) of Problem II can be obtained by finding the minimum Frobenius norm solution of a changed Problem I. A numerical example shows that the introduced iterative algorithm is quite efficient.

Keywords: Model updating, iterative algorithm, gyroscopic system, partially prescribed spectral data, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
3417 A Modification on Newton's Method for Solving Systems of Nonlinear Equations

Authors: Jafar Biazar, Behzad Ghanbari

Abstract:

In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.

Keywords: System of nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
3416 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups

Authors: M. Heydari, S. A. Torabi

Abstract:

The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.

Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
3415 The Number of Rational Points on Elliptic Curves y2 = x3 + b2 Over Finite Fields

Authors: Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract:

Let p be a prime number, Fpbe a finite field and let Qpdenote the set of quadratic residues in Fp. In the first section we givesome notations and preliminaries from elliptic curves. In the secondsection, we consider some properties of rational points on ellipticcurves Ep,b: y2= x3+ b2 over Fp, where b ∈ F*p. Recall that theorder of Ep,bover Fpis p + 1 if p ≡ 5(mod 6). We generalize thisresult to any field Fnp for an integer n≥ 2. Further we obtain someresults concerning the sum Σ[x]Ep,b(Fp) and Σ[y]Ep,b(Fp), thesum of x- and y- coordinates of all points (x, y) on Ep,b, and alsothe the sum Σ(x,0)Ep,b(Fp), the sum of points (x, 0) on Ep,b.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
3414 A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times

Authors: Jinghao Sun, Guozhen Tan, Guangjian Hou

Abstract:

The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.

Keywords: Chinese Postman Problem, Time Dependent, Integer Programming, Upper Bound Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
3413 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
3412 Modeling and Optimization of Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

 This paper deals with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system’s efficiency and productivity. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
3411 A Hybrid Heuristic for the Team Orienteering Problem

Authors: Adel Bouchakhchoukha, Hakim Akeb

Abstract:

In this work, we propose a hybrid heuristic in order to solve the Team Orienteering Problem (TOP). Given a set of points (or customers), each with associated score (profit or benefit), and a team that has a fixed number of members, the problem to solve is to visit a subset of points in order to maximize the total collected score. Each member performs a tour starting at the start point, visiting distinct customers and the tour terminates at the arrival point. In addition, each point is visited at most once, and the total time in each tour cannot be greater than a given value. The proposed heuristic combines beam search and a local optimization strategy. The algorithm was tested on several sets of instances and encouraging results were obtained.

Keywords: Team Orienteering Problem, Vehicle Routing, Beam Search, Local Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
3410 An Asymptotic Formula for Pricing an American Exchange Option

Authors: Hsuan-Ku Liu

Abstract:

In this paper, the American exchange option (AEO) valuation problem is modelled as a free boundary problem. The critical stock price for an AEO is satisfied an integral equation implicitly. When the remaining time is large enough, an asymptotic formula is provided for pricing an AEO. The numerical results reveal that our asymptotic pricing formula is robust and accurate for the long-term AEO.

Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
3409 Determining Optimal Production Plan by Revised Surrogate Worth Trade-off Method

Authors: Tunjo Peric, Zoran Babic

Abstract:

The authors of this work indicate by means of a concrete example that it is possible to apply efficaciously the method of multiple criteria programming in dealing with the problem of determining the optimal production plan for a certain period of time. The work presents: (1) the selection of optimization criteria, (2) the setting of the problem of determining an optimal production plan, (3) the setting of the model of multiple criteria programming in finding a solution to a given problem, (4) the revised surrogate trade-off method, (5) generalized multicriteria model for solving production planning problem and problem of choosing technological variants in the metal manufacturing industry. In the final part of this work the authors reflect on the application of the method of multiple criteria programming while determining the optimal production plan in manufacturing enterprises.

Keywords: multi-criteria programming, production planning, technological variant, Surrogate Worth Trade-off Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
3408 Augmented Reality for Maintenance Operator for Problem Inspections

Authors: Chong-Yang Qiao, Teeravarunyou Sakol

Abstract:

Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.

Keywords: Augmented reality, situation awareness, decision-making, problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
3407 Quantum Computing: A New Era of Computing

Authors: Jyoti Chaturvedi Gursaran

Abstract:

Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.

Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
3406 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: Dam-break flows, deformable beds, finite element method, finite volume method, linear elasticity, Shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
3405 The Frequency Graph for the Traveling Salesman Problem

Authors: Y. Wang

Abstract:

Traveling salesman problem (TSP) is hard to resolve when the number of cities and routes become large. The frequency graph is constructed to tackle the problem. A frequency graph maintains the topological relationships of the original weighted graph. The numbers on the edges are the frequencies of the edges emulated from the local optimal Hamiltonian paths. The simplest kind of local optimal Hamiltonian paths are computed based on the four vertices and three lines inequality. The search algorithm is given to find the optimal Hamiltonian circuit based on the frequency graph. The experiments show that the method can find the optimal Hamiltonian circuit within several trials.

Keywords: Traveling salesman problem, frequency graph, local optimal Hamiltonian path, four vertices and three lines inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
3404 Identifying an Unknown Source in the Poisson Equation by a Modified Tikhonov Regularization Method

Authors: Ou Xie, Zhenyu Zhao

Abstract:

In this paper, we consider the problem for identifying the unknown source in the Poisson equation. A modified Tikhonov regularization method is presented to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical examples show that the proposed method is effective and stable.

Keywords: Ill-posed problem, Unknown source, Poisson equation, Tikhonov regularization method, Discrepancy principle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
3403 Discrete Time Optimal Solution for the Connection Admission Control Problem

Authors: C. Bruni, F. Delli Priscoli, G. Koch, I. Marchetti

Abstract:

The Connection Admission Control (CAC) problem is formulated in this paper as a discrete time optimal control problem. The control variables account for the acceptance/ rejection of new connections and forced dropping of in-progress connections. These variables are constrained to meet suitable conditions which account for the QoS requirements (Link Availability, Blocking Probability, Dropping Probability). The performance index evaluates the total throughput. At each discrete time, the problem is solved as an integer-valued linear programming one. The proposed procedure was successfully tested against suitably simulated data.

Keywords: Connection Admission Control, Optimal Control, Integer valued Linear Programming, Quality of Service Requirements, Robust Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
3402 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem

Authors: H. Taghvafard, G. H. Erjaee

Abstract:

A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
3401 An Algorithm for the Map Labeling Problem with Two Kinds of Priorities

Authors: Noboru Abe, Yoshinori Amai, Toshinori Nakatake, Sumio Masuda, Kazuaki Yamaguchi

Abstract:

We consider the problem of placing labels of the points on a plane. For each point, its position, the size of its label and a priority are given. Moreover, several candidates of its label positions are prespecified, and each of such label positions is assigned a priority. The objective of our problem is to maximize the total sum of priorities of placed labels and their points. By refining a labeling algorithm that can use these priorities, we propose a new heuristic algorithm which is more suitable for treating the assigned priorities.

Keywords: Map labeling, greedy algorithm, heuristic algorithm, priority.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
3400 Using Pattern Search Methods for Minimizing Clustering Problems

Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar

Abstract:

Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.

Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
3399 Fuzzy Shortest Paths Approximation for Solving the Fuzzy Steiner Tree Problem in Graphs

Authors: Miloš Šeda

Abstract:

In this paper, we deal with the Steiner tree problem (STP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. We propose a modification of the shortest paths approximation based on the fuzzy shortest paths (FSP) evaluations. Since a fuzzy min operation using the extension principle leads to nondominated solutions, we propose another approach to solving the FSP using Cheng's centroid point fuzzy ranking method.

Keywords: Steiner tree, single shortest path problem, fuzzyranking, binary heap, priority queue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
3398 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
3397 An Aggregate Production Planning Model for Brass Casting Industry in Fuzzy Environment

Authors: Ömer Faruk Baykoç, Ümit Sami Sakalli

Abstract:

In this paper, we propose a fuzzy aggregate production planning (APP) model for blending problem in a brass factory which is the problem of computing optimal amounts of raw materials for the total production of several types of brass in a period. The model has deterministic and imprecise parameters which follows triangular possibility distributions. The brass casting APP model can not always be solved by using common approaches used in the literature. Therefore a mathematical model is presented for solving this problem. In the proposed model, the Lai and Hwang-s fuzzy ranking concept is relaxed by using one constraint instead of three constraints. An application of the brass casting APP model in a brass factory shows that the proposed model successfully solves the multi-blend problem in casting process and determines the optimal raw material purchasing policies.

Keywords: Aggregate production planning, Blending, brasscasting, possibilistic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
3396 DHT-LMS Algorithm for Sensorineural Loss Patients

Authors: Sunitha S. L., V. Udayashankara

Abstract:

Hearing impairment is the number one chronic disability affecting many people in the world. Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Hartley Transform Power Normalized Least Mean Square algorithm (DHT-LMS) to improve the SNR and to reduce the convergence rate of the Least Means Square (LMS) for sensorineural loss patients. The DHT transforms n real numbers to n real numbers, and has the convenient property of being its own inverse. It can be effectively used for noise cancellation with less convergence time. The simulated result shows the superior characteristics by improving the SNR at least 9 dB for input SNR with zero dB and faster convergence rate (eigenvalue ratio 12) compare to time domain method and DFT-LMS.

Keywords: Hearing Impairment, DHT-LMS, Convergence rate, SNR improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
3395 Fourier Spectral Method for Analytic Continuation

Authors: Zhenyu Zhao, Lei You

Abstract:

The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.

Keywords: Analytic continuation, ill-posed problem, regularization method Fourier spectral method, the discrepancy principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433