Search results for: Pond%20ash
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30

Search results for: Pond%20ash

30 Effect of Pond Ash and RBI Grade 81 on Properties of Subgrade Soil and Base Course of Flexible Pavement

Authors: B. M. Patil, K. A. Patil

Abstract:

This paper deals with use of pond ash and RBI Grade 81 for improvement in CBR values of clayey soil and grade-III materials used for base course of flexible pavement. The pond ash is a thermal power plant waste and RBI Grade 81 is chemical soil stabilizer. The geotechnical properties like Maximum Dry Density (MDD), Optimum Moisture Content (OMC), Unconfined Compressive Strength (UCS), CBR value and Differential Free Swell (DFS) index of soil are tested in the laboratory for different mixes of soil, pond ash and RBI Grade 81 for different proportions. The mixes of grade-III material, pond ash and RBI Grade 81 tested for CBR test. From the study it is found that the geotechnical properties of clayey soil are improved significantly, if pond ash added with RBI Grade 81. The optimum mix recommended for subgrade is soil: pond ash: RBI Grade 81 in proportions of 76:20:4. The CBR value of grade-III base course treated with 20% pond ash and 4% RBI Grade 81 is increased by 125.93% as compared to untreated grade-III base course.

Keywords: Clayey soil, Geotechnical properties, Pond ash, RBI Grade 81™.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692
29 A Note on Significance of Solar Pond Technology for Power Generation

Authors: Donepudi Jagadish

Abstract:

In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.

Keywords: Renewable Energy, Solar Pond, Energy Efficiency, Construction of Solar Pond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
28 Effects of Heavy Pumping and Artificial Groundwater Recharge Pond on the Aquifer System of Langat Basin, Malaysia

Authors: R. May, K. Jinno, I. Yusoff

Abstract:

The paper aims at evaluating the effects of heavy groundwater withdrawal and artificial groundwater recharge of an ex-mining pond to the aquifer system of the Langat Basin through the three-dimensional (3D) numerical modeling. Many mining sites have been left behind from the massive mining exploitations in Malaysia during the England colonization era and from the last few decades. These sites are able to accommodate more than a million cubic meters of water from precipitation, runoff, groundwater, and river. Most of the time, the mining sites are turned into ponds for recreational activities. In the current study, an artificial groundwater recharge from an ex-mining pond in the Langat Basin was proposed due to its capacity to store >50 million m3 of water. The location of the pond is near the Langat River and opposite a steel company where >4 million gallons of groundwater is withdrawn on a daily basis. The 3D numerical simulation was developed using the Groundwater Modeling System (GMS). The calibrated model (error about 0.7 m) was utilized to simulate two scenarios (1) Case 1: artificial recharge pond with no pumping and (2) Case 2: artificial pond with pumping. The results showed that in Case 1, the pond played a very important role in supplying additional water to the aquifer and river. About 90,916 m3/d of water from the pond, 1,173 m3/d from the Langat River, and 67,424 m3/d from the direct recharge of precipitation infiltrated into the aquifer system. In Case 2, due to the abstraction of groundwater from a company, it caused a steep depression around the wells, river, and pond. The result of the water budget showed an increase rate of inflow in the pond and river with 92,493m3/d and 3,881m3/d respectively. The outcome of the current study provides useful information of the aquifer behavior of the Langat Basin.

Keywords: Groundwater and surface water interaction, groundwater modeling, GMS, artificial recharge pond, ex-mining site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
27 Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

Authors: Chia Lin Chan, Yi Ju Yang, Chih Chin Yang

Abstract:

Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall frequency of one hour rainfall duration is more than 100-year frequency which exceeds the flood detention standard of 20-year frequency for the flood detention pond, the flood peak duration of flood detention pond is 1.7 hours at most even though the flood detention pond with maximum drainage potential about 15.0 m3/s of pumping system is constructed. If the rainfall peak current is more than maximum drainage potential, the flood peak duration of flood detention pond is about 1.9 hours at most. The flood detention pond is the key factor of stable drainage control and flood prevention. The critical factors of flood disaster is not only rainfall mass, but also rainfall frequency of heavy storm in different rainfall duration and flood detention frequency of flood detention system.

Keywords: Rainfall frequency, Rainfall duration, Rainfallintensity, Flood detention capability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
26 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

Abstract:

A salinity gradient solar pond is a free energy source system for collecting, convertingand storing solar energy as heat. In thispaper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transferbehaviour of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results arefound to be in good agreement.

Keywords: Finite Difference method, Salt-gradient solar-pond, Solar energy, Transient heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4918
25 Instructional Design Using the Virtual Ecological Pond for Science Education in Elementary Schools

Authors: Wernhuar Tarng, Wen-Shin Tsai, Yu-Si Lin, Chen-Kai Shiu

Abstract:

Ecological ponds can be a good teaching tool for science teachers, but they must be built and maintained properly to provide students with a safe and suitable learning environment. Hence, many schools do not have the ability to build an ecological pond. This study used virtual reality technology to develop a webbased virtual ecological pond. Supported by situated learning theory and the instructional design of “Aquatic Life" learning unit, elementary school students can actively explore in the virtual ecological pond to observe aquatic animals and plants and learn about the concept of ecological conservation. A teaching experiment was conducted to investigate the learning effectiveness and practicability of this instructional design, and the results showed that students improved a great deal in learning about aquatic life. They found the virtual ecological pond interesting, easy to operate and helpful to understanding the aquatic ecological system. Therefore, it is useful in elementary science education.

Keywords: Virtual reality, virtual ecological ponds, situated learning, instructional design, science education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
24 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond

Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena

Abstract:

Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.

Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
23 Performance of Phytogreen Zone for BOD5 and SS Removal for Refurbishment Conventional Oxidation Pond in an Integrated Phytogreen System

Authors: A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd Ismid, H. M. Nakmal, S. Sulaiman, A. H. Hasmanie, M. R. Siti Norsita, M. Nasrullah

Abstract:

In this study, the effectiveness of an integrated aquatic plants in phytogreen zone was studied and statistical analysis for the promotional integrated phytogreen system approached was discussed. It was found that's the effectiveness of using aquatic plant such as Typha angustifolia sp., Lepironia articulata sp., Limnocharis flava sp., Monochoria vaginalis sp., Pistia stratiotes sp., and Eichhornia crassipes sp., in the conventional oxidation pond process in order to comply the standard A according to Malaysia Environmental Quality Act 1974 (Act 127); Environmental Quality (Sewage) Regulation 2009 for effluent discharge into inland water near the residential area was successfully shown. It was concluded that the integrated phtogreen system developed in this study has great potential for refurbishment wastewater in conventional oxidation pond.

Keywords: Phytoremediation, integrated phytogreen system, sewage treatment plant, oxidation pond, aquatic plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
22 Tropical Peat Soil Stabilization using Class F Pond Ash from Coal Fired Power Plant

Authors: Kolay, P.K., Sii, H. Y., Taib, S.N.L.

Abstract:

This paper presents the stabilization potential of Class F pond ash (PA) from a coal fired thermal power station on tropical peat soil. Peat or highly organic soils are well known for their high compressibility, natural moisture content, low shear strength and long-term settlement. This study investigates the effect of different amount (i.e., 5, 10, 15 and 20%) of PA on peat soil, collected from Sarawak, Malaysia, mainly compaction and unconfined compressive strength (UCS) properties. The amounts of PA added to the peat soil sample as percentage of the dry peat soil mass. With the increase in PA content, the maximum dry density (MDD) of peat soil increases, while the optimum moisture content (OMC) decreases. The UCS value of the peat soils increases significantly with the increase of PA content and also with curing periods. This improvement on compressive strength of tropical peat soils indicates that PA has the potential to be used as a stabilizer for tropical peat soil. Also, the use of PA in soil stabilization helps in reducing the pond volume and achieving environment friendly as well as a sustainable development of natural resources.

Keywords: Compaction, Peat soil, Pond ash, Stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
21 Evaluation of Stormwater Quantity and Quality Control through Constructed Mini Wet Pond: A Case Study

Authors: Y. S. Liew, K. A. Puteh Ariffin, M. A. Mohd Nor

Abstract:

One of the Best Management Practices (BMPs) promoted in Urban Stormwater Management Manual for Malaysia (MSMA) published by the Department of Irrigation and Drainage (DID) in 2001 is through the construction of wet ponds in new development projects for water quantity and quality control. Therefore, this paper aims to demonstrate a case study on evaluation of a constructed mini wet pond located at Sekolah Rendah Kebangsaan Seksyen 2, Puchong, Selangor, Malaysia in both stormwater quantity and quality aspect particularly to reduce the peak discharge by temporary storing and gradual release of stormwater runoff from an outlet structure or other release mechanism. The evaluation technique will be using InfoWorks Collection System (CS) as the numerical modeling approach for water quantity aspect. Statistical test by comparing the correlation coefficient (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the model in simulating the peak discharge changes. Results demonstrated that there will be a reduction in peak flow at 11 % to 15% and time to peak flow is slower by 5 minutes through a wet pond. For water quality aspect, a survey on biological indicator of water quality carried out depicts that the pond is within the range of rather clean to clean water with the score of 5.3. This study indicates that a constructed wet pond with wetland facilities is able to help in managing water quantity and stormwater generated pollution at source, towards achieving ecologically sustainable development in urban areas.

Keywords: Wet pond, Retention Facilities, Best Management Practices (BMP), Urban Stormwater Management Manual for Malaysia (MSMA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
20 Extinct Ponds: Potential for Increasing Landscape Retention Capacity?

Authors: Vaclav David, Tereza Davidova

Abstract:

The restoration of extinct ponds is considered as one of ways to gain new retention capacities for water which is getting much more important issue with respect to expected impacts of a climate change. However, there are also other pressures on the landscape which must be all taken into consideration when making a decision on the possible restoration of extinct ponds. The research presented here focuses besides others on the restoration of former ponds which could be important for both the flood protection and drought impacts prevention. The first step of the methodology development for the assessment of such areas is the assessment of their present state. In this paper, the results of land use types assessment for 22 localities are presented. These results confirm the assumption that the most present land use type in such areas is the permanent grassland. However, the spectra of land use types present in extinct pond areas is very diverse and include besides others also airport areas and industry.

Keywords: Extinct pond, land use change, sustainable water resources management, pond restoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
19 A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs

Authors: Yu-Chuan Chang, Chen Shi-Kai

Abstract:

A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.

Keywords: Return flow, water reuse, wetland paddy, return flow ratio (RR), water reuse ratio (WRR), water supplementary ratio(WSR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
18 Solar Energy Collection using a Double-layer Roof

Authors: S. Kong Wang

Abstract:

The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.

Keywords: solar energy collection, double-layer solar roof, energy conservation, ORC, OTEC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
17 Design and Control Strategy of Diffused Air Aeration System

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).

Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3467
16 Population Structure of European Pond Turtles, Emys orbicularis (Linnaeus, 1758) in Narta Lagoon (Vlora Bay, Albania)

Authors: Enerit Saçdanaku, Idriz Haxhiu

Abstract:

In this study was monitored the population of the European Pond Turtle, Emys orbicularis (Linnaeus, 1758) in the area of Narta Lagoon, Vlora Bay (Albania), from August to October 2014. A total of 54 individuals of E. orbicularis were studied using different methodologies. Curved Carapace Length (CCL), Plastron Length (PL) and Curved Carapace Width (CCW) were measured for each individual of E. orbicularis and were statistically analyzed. All captured turtles were separated in seven different size – classes based on their carapace length (CCL). Each individual of E. orbicularis was marked by notching the carapace (marginal scutes). Form all individuals captured resulted that 37 were females (68.5%), 14 males (25.9%), 3 juveniles (5.5%), while 18 individuals of E. orbicularis were recaptured for the first and some for the second time.

Keywords: Emys orbicularis, female, juvenile, male, population, size – classes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
15 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise

Authors: Rahman Davtalab, Saba Ghotbi

Abstract:

Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach in the northeast of Florida adjacent to the Atlantic Ocean, Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24 % by the mid-21st century. 

Keywords: groundwater, surface water, Florida, retention pond, tide, sea-level rise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
14 Effect of Stocking Density on Monosex Nile Tilapia Growth during Pond Culture in India

Authors: Suman B. Chakraborty, Samir Banerjee

Abstract:

Stocking density is considered one of the important factors affecting fish growth. But, information related to impact of stocking density on growth performance of monosex tilapia population under the ecological conditions of Gangetic plains in West Bengal, India is limited. The aim of our study was to compare the growth potential of monosex tilapia at various stocking densities and to determine an ideal stocking density for culture of all-male monosex fish. The males were isolated by examination of genital papilla region and were stocked separately in 0.01 ha earthen ponds at different stocking densities (5000, 10000, 15000, 20000, 25000 and 30000 fingerlings/ha). It was found that the highest weight, length, daily weight gain, growth rate and protein content were observed for the 20000 fish/ha density class. Thus, culture of monosex tilapia at a density of 20000 fish/ha can be considered ideal for augmented production of the fish under Indian context.

Keywords: Growth potential, Nile tilapia, Pond culture, Stockingdensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5795
13 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Keywords: artificial neural networks, aquaculture, forced circulation hot water system,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
12 Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Keywords: Quasi-molecular modelling, particle modelling, lid driven cavity flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
11 Effect of Different Treatments on the Periphyton Quantity and Quality in Experimental Fishponds

Authors: T. Kosáros, D. Gál, F. Pekár, Gy. Lakatos

Abstract:

Periphyton development and composition were studied in three different treatments: (i) two fishpond units of wetland-type wastewater treatment pond systems, (ii) two fishponds in combined intensive-extensive fish farming systems and (iii) three traditional polyculture fishponds. Results showed that amounts of periphyton developed in traditional polyculture fishponds (iii) were different compared to the other treatments (i and ii), where the main function of ponds was stated wastewater treatment. Negative correlation was also observable between water quality parameters and periphyton production. The lower trophity, halobity and saprobity level of ponds indicated higher amount of periphyton. The dry matter content of periphyton was significantly higher in the samples, which were developed in traditional polyculture fishponds (2.84±3.02 g m-2 day-1, whereby the ash content in dry matter 74%), than samples taken from (i) (1.60±2.32 g m-2 day-1, 61%) and (ii) fishponds (0.65±0.45 g m-2 day-1, 81%).

Keywords: Artificial substrate, fishpond, periphyton, waterquality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
10 Variability of Soil Strength Parameters and its Effect on the Slope Stability of the Želazny Most Tailing Dam

Authors: Stella A. Arnaouti, Demos C. Angelides, Theodoros N. Chatzigogos, Witold M. Pytel

Abstract:

The Želazny Most tailing pond is one of the largest facilities worldwide for waste disposal from the copper mines located in South-West Poland. A potential failure of the dam would allow more than 10 million cubic meters of contaminated slurry to flow to the valley, causing immense environmental problems to the surrounding area. Thus, the determination of the strength properties of the dam's soils and their variability is of utmost importance. An extensive site investigation consisting of more than 480 cone penetration tests (CPTs) with or without pore water pressure measurements were conducted within a period of 13 years to study the mechanical properties of the tailings body. The present work investigates the point variability of the soil strength parameters (effective friction angle

Keywords: Soil strength variability, friction angle spatial variability, Želazny Most tailing dam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121
9 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)

Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick

Abstract:

The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.

Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
8 Studies on Seasonal Variations of Physico- Chemical Parameters of Fish Farm at Govt. Nursery Unit, Muzaffargarh, Punjab, Pakistan

Authors: Muhammad Naeem, Abdus Salam, Muhammad Ashraf, Muhammad Imran, Mehtab Ahmad, Muhammad Jamshed Khan, Muhammad Mazhar Ayaz, Muzaffar Ali, Arshad Ali, Memoona Qayyum Abir Ishtiaq

Abstract:

The present study was designed to demonstrate the seasonal variations in physico-chemical parameters of fish farm at Govt. Nursery Unit, Muzaffargarh, Department of Fisheries Govt. of Punjab, Pakistan for a period of eight months from January to August 2008. Water samples were collected on fifteen days basis and have been analyzed for estimation of Air temperature, Water temperature, Light penetration, pH, Total dissolved oxygen, Clouds, Carbonates, Bicarbonates, Total carbonates, Total dissolved solids, Chlorides, Calcium and Hardness. Seasonal fluctuations were observed in all the physico-chemical parameters of fish farm. The overall physicochemical parameters of fish pond water remained within the tolerable range throughout the study period.

Keywords: Freshwater, Fish farm, Water quality, Seasonal variation, Chemical factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
7 Prevalence and Associated Risk Factors of Eimeria in Sheep of Punjab, Pakistan

Authors: M.N. Khan, T. Rehman, Z Iqbal, M.S Sajid, M Ahmad, M Riaz

Abstract:

A cross-sectional study was carried out to determine the prevalence, species characterization and associated risk factors with Eimeria (E.) in sheep of district Toba Tek Singh from April, 2009 to March, 2010. Of the total 486 faecal samples examined for Eimeria, 209 (43%) were found infected with five species of Eimeria. Amongst the identified species of Eimeria, E. ovinoidalis was the commonest one (48.32%), followed in order by E. ahsata, E. intricata, E. parva and E. faurei with prevalence of 45.45, 28.71, 24.40 and 19.14 percent respectively. Peak prevalence was observed in August. Wet season (rainy and post-rainy) was found to be favourable for Eimeria infection. Lambs had significantly higher prevalence (P < 0.05) of Eimeria than adults. Similarly higher prevalence of Eimeria was observed in female as compared to male. Among management and husbandry practices; watering system, housing system, floor type and herd size strongly influenced the prevalence of Eimeria. Coccidiosis was more prevalent in closed housing system, non-cemented floor type, pond watered animals and larger herds (P < 0.05) as compared to open housing system, partially cemented floor type, tap watered animals and smaller herds respectively. Feeding system, breed and body condition of animals were not found as risk factors (P>0.05) influencing prevalence of Eimeria.

Keywords: Eimeria, Pakistan prevalence, sheep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
6 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.

Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
5 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.

Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
4 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish

Authors: Gintarė Sauliutė, Gintaras Svecevičius

Abstract:

Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).

Keywords: Bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
3 The Micro Ecosystem Restoration Mechanism Applied for Feasible Research of Lakes Eutrophication Enhancement

Authors: Ching-Tsan Tsai, Sih-Rong Chen, Chi-Hung Hsieh

Abstract:

The technique of inducing micro ecosystem restoration is one of aquatic ecology engineering methods used to retrieve the polluted water. Batch scale study, pilot plant study, and field study were carried out to observe the eutrophication using the Inducing Ecology Restorative Symbiosis Agent (IERSA) consisting mainly degraded products by using lactobacillus, saccharomycete, and phycomycete. The results obtained from the experiments of the batch scale and pilot plant study allowed us to development the parameters for the field study. A pond, 5 m to the outlet of a lake, with an area of 500 m2 and depth of 0.6-1.2 m containing about 500 tons of water was selected as a model. After the treatment with 10 mg IERSA/L water twice a week for 70 days, the micro restoration mechanisms consisted of three stages (i.e., restoration, impact maintenance, and ecology recovery experiment after impact). The COD, TN, TKN, and chlorophyll a were reduced significantly in the first week. Although the unexpected heavy rain and contaminate from sewage system might slow the ecology restoration. However, the self-cleaning function continued and the chlorophyll a reduced for 50% in one month. In the 4th week, amoeba, paramecium, rotifer, and red wriggle worm reappeared, and the number of fish flies appeared up to1000 fish fries/m3. Those results proved that inducing restorative mechanism can be applied to improve the eutrophication and to control the growth of algae in the lakes by gaining the selfcleaning through inducing and competition of microbes. The situation for growth of fishes also can reach an excellent result due to the improvement of water quality.

Keywords: Ecosystem restoration, eutrophication, lake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
2 The Necessity of Optimized Management on Surface Water Sources of Zayanderood Basin

Authors: A. Gandomkar, K. Fouladi

Abstract:

One of the efficient factors in comprehensive development of an area is to provide water sources and on the other hand the appropriate management of them. Population growth and nourishment security for such a population necessitate the achievement of constant development besides the reforming of traditional management in order to increase the profit of sources; In this case, the constant exploitation of sources for the next generations will be considered in this program. The achievement of this development without the consideration and possibility of water development will be too difficult. Zayanderood basin with 41500 areas in square kilometers contains 7 sub-basins and 20 units of hydrologic. In this basin area, from the entire environment descending, just a small part will enter into the river currents and the rest will be out of efficient usage by various ways. The most important surface current of this basin is Zayanderood River with 403 kilometers length which is originated from east slopes of Zagros mount and after draining of this basin area it will enter into Gaavkhooni pond. The existence of various sources and consumptions of water in Zayanderood basin, water transfer of the other basin areas into this basin, of course the contradiction between the upper and lower beneficiaries, the existence of worthwhile natural ecosystems such as Gaavkhooni swamp in this basin area and finally, the drought condition and lack of water in this area all necessitate the existence of comprehensive management of water sources in this central basin area of Iran as this method is a kind of management which considers the development and the management of water sources as an equilibrant way to increase the economical and social benefits. In this study, it is tried to survey the network of surface water sources of basin in upper and lower sections; at the most, according to the difficulties and deficiencies of an efficient management of water sources in this basin area, besides the difficulties of water draining and the destructive phenomenon of flood-water, the appropriate guidelines according to the region conditions are presented in order to prevent the deviation of water in upper sections and development of regions in lower sections of Zayanderood dam.

Keywords: Zayanderood Basin, Efficient Management, Hydrology Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
1 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: Bioeconomy, lipids, microalgae, proteins, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833