Search results for: Oscillatory stretching sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 282

Search results for: Oscillatory stretching sheet

222 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure

Authors: M. Battira, R. Bessaih

Abstract:

We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.

Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
221 Studies on Distortion of Dissimilar Thin Sheet Weld Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

To achieve reliable welds with minimum distortion for the fabrication of components in aerospace industry laser beam welding is attempted. Laser welding can provide a significant benefit for the welding of Titanium and Aluminium thin sheet alloys of its precision and rapid processing capability. For laser welding, pulse shape, energy, duration, repetition rate and peak power are the most important parameters that influence directly the quality of welds. In this experimental work for joining 1mm thick TI6AL4V and AA2024 alloy and JK600 Nd:YAG pulsed laser units used. The distortions at different welding power and speed of titanium and aluminium thin sheet alloys are investigated. Test results reveal that increase in welding speed increases distortion in weldment

Keywords: Laser Beam Welding, Titanium, Aluminium alloy sheets and distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632
220 Cladding of Al and Cu by Differential Speed Rolling

Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha

Abstract:

Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area. 

Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
219 Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.

Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
218 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction

Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop

Abstract:

A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.

Keywords: Exponentially shrinking sheet, magnetic field, mixed convection, suction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
217 A Further Improvement on the Resurrected Core-Spreading Vortex Method

Authors: M-J. Huang, C-J. Huang, L-C. Chen

Abstract:

In a previously developed fast vortex method, the diffusion of the vortex sheet induced at the solid wall by the no-slip boundary conditions was modeled according to the approximation solution of Koumoutsakos and converted into discrete blobs in the vicinity of the wall. This scheme had been successfully applied to a simulation of the flow induced with an impulsively initiated circular cylinder. In this work, further modifications on this vortex method are attempted, including replacing the approximation solution by the boundary-element-method solution, incorporating a new algorithm for handling the over-weak vortex blobs, and diffusing the vortex sheet circulation in a new way suitable for high-curvature solid bodies. The accuracy is thus largely improved. The predictions of lift and drag coefficients for a uniform flow past a NASA airfoil agree well with the existing literature.

Keywords: Resurrected core-spreading vortex method, Boundaryelement method, Vortex sheet, Over-weak vortex blobs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
216 Numerical Investigation on Anchored Sheet Pile Quay Wall with Separated Relieving Platform

Authors: Mahmoud Roushdy, Mohamed El Naggar, Ahmed Yehia Abdelaziz

Abstract:

Anchored sheet pile has been used worldwide as front quay walls for decades. With the increase in vessel drafts and weights, those sheet pile walls need to be upgraded by increasing the depth of the dredging line in front of the wall. One of the upgrades for the sheet pile wall is to add a separated platform to the system, where the platform is structurally separated from the front wall. The platform is structurally separated from the front wall. This paper presents a numerical investigation utilizing finite element analysis on the behavior of separated relieve platforms installed within existing anchored sheet pile quay walls. The investigation was done in two steps: a verification step followed by a parametric study. In the verification step, the numerical model was verified based on field measurements performed by others. The validated model was extended within the parametric study to a series of models with different backfill soils, separation gap width, and number of pile rows supporting the platform. The results of the numerical investigation show that using stiff clay as backfill soil (neglecting consolidation) gives better performance for the front wall and the first pile row adjacent to sandy backfills. The degree of compaction of the sandy backfill slightly increases lateral deformations but reduces bending moment acting on pile rows, while the effect is minor on the front wall. In addition, the increase in the separation gap width gradually increases bending moments on the front wall regardless of the backfill soil type, while this effect is reversed on pile rows (gradually decrease). Finally, the paper studies the possibility of deepening the basin along with the separation to take advantage of the positive separation effect on piles, and front wall.

Keywords: Anchored sheet pile, relieving platform, separation gap, upgrade quay wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177
215 Experimental Study on Quasi-Static Response of Multi-layer Sandwich Composite Structures

Authors: S. Jedari Salami

Abstract:

In this paper the effects of adding an extra layer within a sandwich panel and core- types in top and bottom cores on quasi- static loading are studied experimentally. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Quasi- static tests were done by ZWICK testing machine on fully backed specimens with two foam cores, Poly Urethane Rigid (PUR) and Poly Vinyl Chloride (PVC). It was found that the core material type has made significant role on improving the sandwich panel’s behavior compared with the effect of extra layer location.

Keywords: Multi-layer sandwich structures, Internal sheet, Crushable foam, Top core, Bottom core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
214 The Self-Propelled Model of a Boat, Based on the Wave Thrust

Authors: V. Arabadzhi

Abstract:

We attempted investigate a boat model, based on the conversion of energy of surface wave into a sequence of unidirectional pulses of jet spurts, in other words - model of the boat, which is thrusting by the waves field on water surface. These pulses are forming some average reactive stream from the output nozzle on the stern of boat. The suggested model provides the conversion of its oscillatory motions (both pitching and rolling) into a jet flow. This becomes possible due to special construction of the boat and due to several details, sensitive to the local wave field. The boat model presents the uniflow jet engine without slow conversions of mechanical energy into intermediate forms and without any external sources of energy (besides surface waves). Motion of boat is characterized by fast jerks and average onward velocity, which exceeds the velocities of liquid particles in the wave.

Keywords: Flat-bottomed boat, Underwater wing, Input and output nozzles, Wave thrust, Conversion of wave into a jet stream, Oscillatory motion and onward motion, Squid-like pump, Hatch-like pump, The thrust due to lifting float, The thrust due to radiation reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
213 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix

Authors: Comingstarful Marthong, Deba Kumar Sarma

Abstract:

Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.

Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
212 Effect of Processing Methods on Texture Evolution in AZ31 Mg Alloy Sheet

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Textures of AZ31 Mg alloy sheets were evaluated by using neutron diffraction method in this study. The AZ31 sheets were fabricated either by conventional casting and subsequent hot rolling or strip casting. The effect of warm rolling was investigated using the AZ31 Mg alloy sheet produced by conventional casting. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as 200oC under the roll speed of 30 m/min. The initial microstructure of conventionally cast specimen was found to be partially recrystallized structures. Grain refinement was found to occur actively during the warm rolling. The (0002),(10-10) (10-11),and (10-12) complete pole figures were measured using the HANARO FCD (Neutron Four Circle Diffractometer) and ODF were calculated. The major texture of all specimens can be expressed by ND//(0001) fiber texture. Texture of hot rolled specimen showed the strongest fiber component, while that of strip cast sheet seemed to be similar to random distribution.

Keywords: Mg alloy, texture, pole figure, ODF, neutron diffraction, warm rolling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
211 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, LD-SMC, A-SMC, HGM, damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
210 Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler

Authors: Tse-Yu Hsieh, Jyh-Jian Chen

Abstract:

Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.

Keywords: Polymerase chain reaction, oscillatory thermal cycler, standard deviation of temperature, nature convective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
209 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet

Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu

Abstract:

The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.

Keywords: Boundary layer, Nanofluid, Shrinking sheet, Brownian motion, Thermophoresis, Similarity solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
208 Radiation Effect on Unsteady MHD Flow over a Stretching Surface

Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.

Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
207 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
206 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
205 Enhancement of Low Contrast Satellite Images using Discrete Cosine Transform and Singular Value Decomposition

Authors: A. K. Bhandari, A. Kumar, P. K. Padhy

Abstract:

In this paper, a novel contrast enhancement technique for contrast enhancement of a low-contrast satellite image has been proposed based on the singular value decomposition (SVD) and discrete cosine transform (DCT). The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD-DCT domain and after normalizing the singular value matrix; the enhanced image is reconstructed by using inverse DCT. The visual and quantitative results suggest that the proposed SVD-DCT method clearly shows the increased efficiency and flexibility of the proposed method over the exiting methods such as Linear Contrast Stretching technique, GHE technique, DWT-SVD technique, DWT technique, Decorrelation Stretching technique, Gamma Correction method based techniques.

Keywords: Singular Value Decomposition (SVD), discretecosine transforms (DCT), image equalization and satellite imagecontrast enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3789
204 Studies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan, N. Mathiyazagan

Abstract:

Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, focusing distance and type of shielding gas and thereby evaluate welding performance of titanium and aluminium alloy thin sheets. This paper reviews the basic concepts associated with different parameters of Ti/Al sheet joint using Laser beam welding.

Keywords: Laser Beam Welding (LBW), Dissimilar joining Titanium and Aluminum sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
203 Vortex Shedding at the End of Parallel-plate Thermoacoustic Stack in the Oscillatory Flow Conditions

Authors: Lei Shi, Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil

Abstract:

This paper investigates vortex shedding processes occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Here, Particle Image Velocimetry (PIV) is used to quantify the vortex shedding processes within an acoustic cycle phase-by-phase, in particular during the “ejection" of the fluid out of the stack. Standard hot-wire anemometry measurement is also applied to detect the velocity fluctuations near the end of the stack. Combination of these two measurement techniques allowed a detailed analysis of the vortex shedding phenomena. The results obtained show that, as the Reynolds number varies (by varying the plate thickness and drive ratio), different flow patterns of vortex shedding are observed by the PIV measurement. On the other hand, the time-dependent hot-wire measurements allow obtaining detailed frequency spectra of the velocity signal, used for calculating characteristic Strouhal numbers. The impact of the plate thickness and the Reynolds number on the vortex shedding pattern has been discussed. Furthermore, a detailed map of the relationship between the Strouhal number and Reynolds number has been obtained and discussed.

Keywords: Oscillatory flow, Parallel-plate thermoacoustic stack, Strouhal numbers, Vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
202 The Effect on Rolling Mill of Waviness in Hot Rolled Steel

Authors: Sunthorn S., Kittiphat R.

Abstract:

The edge waviness in hot rolled steel is a common defect. Variables that affect such defect include raw material and machine. These variables are necessary to consider to understand such defect. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets were divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigation showed that the difference was not significant. Therefore the roll mill machine should be used to adjust to support another location on a roller to avoide edge waviness.

Keywords: Edge waviness, Hot rolling steel, Metal sheet defect, SS 400, Roll leveler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6988
201 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
200 Air-Filled Circular Cross Sectional Cavity for Microwave Non-Destructive Testing

Authors: Mohd Tarmizi Ali, Mohd Khairul Mohd Salleh, Md. Mahfudz Md. Zan

Abstract:

Dielectric sheet perturbation to the dominant TE111 mode resonant frequency of a circular cavity is studied and presented in this paper. The dielectric sheet, placed at the middle of the airfilled cavity, introduces discontinuities and disturbs the configuration of electromagnetic fields in the cavity. For fixed dimensions of cavity and fixed thickness of the loading dielectric, the dominant resonant frequency varies quite linearly with the permittivity of the dielectric. This quasi-linear relationship is plotted using Maple software and verified using 3D electromagnetic simulations. Two probes are used in the simulation for wave excitation into and from the cavity. The best length of probe is found to be 3 mm, giving the closest resonant frequency to the one calculated using Maple. A total of fourteen different dielectrics of permittivity ranging from 1 to 12.9 are tested one by one in the simulation. The works show very close agreement between the results from Maple and the simulation. A constant difference of 0.04 GHz is found between the resonant frequencies collected during simulation and the ones from Maple. The success of this project may lead to the possibility of using the middle loaded cavity at TE111 mode as a microwave non-destructive testing of solid materials.

Keywords: Middle-loaded cavity, dielectric sheet perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
199 Use of Recycled PVB as a Protection against Carbonation

Authors: Michael Tupý, Vít Petránek

Abstract:

The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.

Keywords: Windshield, Poly(vinyl butyral), Mortar, Diffusion, Carbonatation, Polymer waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
198 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
197 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis

Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches

Abstract:

In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
196 A Low Cost Knowledge Base System Framework for Design of Deep Drawing Die

Authors: Vishal Naranje, S. Kumar

Abstract:

In this paper a low cost knowledge base system (KBS) framework is proposed for design of deep drawing die and procedure for developing system modules. The task of building the system is structured into different modules for major activities of design of deep drawing die. A manufacturability assessment module of the proposed framework is developed to check the manufacturability of deep drawn parts. The technological knowledge is represented by using IF- THEN rules and it is coded in AutoLISP language. The module is designed to be loaded into the prompt area of AutoCAD. The cost of implementation of proposed system makes it affordable for small and medium scale sheet metal industries.

Keywords: Knowledge base system, Deep drawing die, Manufacturability, Sheet metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
195 Effect of Cladding and Secondary Members on the Elastic Stability of Main Columns

Authors: Mohamed Massoud El Sadaawy, Ehab Hasan Ahmed Hasan Ali

Abstract:

The corrugated steel cladding used to cover most of steel buildings is considered as non-structural element. This research will reflect the effect of cladding as a shear diaphragm in increasing the normal elastic capacity of columns. This study is important because of the lack of information of the behavior of cladding and secondary members in various codes. Mathematical models for six different cases are carried by software. The results extracted from the program have been plotted showing the effects of different variables on the ultimate load of column. The variables considered in our research are the spacing between columns and the thickness of the corrugated sheet representing the sheet stiffness.

Keywords: Stability of frames about minor axis, The effective length factor, Effect of secondary members on elastic buckling load column, The stiffness of sheeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
194 Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Authors: M. Ishak, K. Yamasaki, K. Maekawa

Abstract:

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Keywords: Laser welding, magnesium alloys, nanoparticles, mechanical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
193 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: Balance sheet indicators, Bancassurance, business models, ward algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222