Search results for: Neutral type neural networks
4458 An Analysis of Global Stability of a Class of Neutral-Type Neural Systems with Time Delays
Authors: Ozlem Faydasicok, Sabri Arik
Abstract:
This paper derives some new sufficient conditions for the stability of a class of neutral-type neural networks with discrete time delays by employing a suitable Lyapunov functional. The obtained conditions can be easily verified as they can be expressed in terms of the network parameters only. It is shown that the results presented in this paper for neutral-type delayed neural networks establish a new set of stability criteria, and therefore can be considered as the alternative results to the previously published literature results. A numerical example is also given to demonstrate the applicability of our proposed stability criterion.Keywords: Stability Analysis, Neutral-Type Neural Networks, Time Delay Systems, Lyapunov Functionals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16384457 Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Uncertain Parameters and Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
In this paper, delay-dependent stability analysis for neutral type neural networks with uncertain paramters and time-varying delay is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the globally asymptotically stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.
Keywords: Neutral type neural networks, Time-varying delay, Stability, Linear matrix inequality(LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18194456 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay
Authors: Zixin Liu, Huawei Yang, Fangwei Chen
Abstract:
This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.
Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15584455 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.
Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16184454 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints
Authors: Mohammad Reza Ghasemi, Amin Ghorbani
Abstract:
The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17404453 A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays
Authors: Guang Zhou, Shouming Zhong
Abstract:
In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.
Keywords: Neural networks, Delayed systems, Lyapunov function, Stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15844452 A Combined Neural Network Approach to Soccer Player Prediction
Authors: Wenbin Zhang, Hantian Wu, Jian Tang
Abstract:
An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.
Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37634451 Some Remarkable Properties of a Hopfield Neural Network with Time Delay
Authors: Kelvin Rozier, Vladimir E. Bondarenko
Abstract:
It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.Keywords: Chaos, Hopfield neural network, noise, synchronization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18904450 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.
Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17984449 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation
Authors: Radouane Iqdour, Abdelouhab Zeroual
Abstract:
The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13284448 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16264447 Fast Complex Valued Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically that the number of computation steps required for the presented fast complex valued time delay neural networks is less than that needed by classical time delay neural networks. Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Complex Valued Time Delay Neural Networks, Cross Correlation, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18254446 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks
Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros
Abstract:
We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18314445 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Liyuan Wang, Shouming Zhong
Abstract:
In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.
Keywords: State estimator, Neural networks, Globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644444 Improved Robust Stability Criteria for Discrete-time Neural Networks
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14774443 Analysis of Periodic Solution of Delay Fuzzy BAM Neural Networks
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao
Abstract:
In this paper, by employing a new Lyapunov functional and an elementary inequality analysis technique, some sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solution for fuzzy bi-directional memory (BAM) neural networks with time-varying delays, and all other solutions of the fuzzy BAM neural networks converge the uniqueness periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of neural networks. Moreover an example is given to illustrate the effectiveness and feasible of results obtained.Keywords: Fuzzy BAM neural networks, Periodic solution, Global exponential stability, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15154442 A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.Keywords: Fast Pattern Detection, Neural Networks, Modified Cross Correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17454441 Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.Keywords: Conventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24794440 Sub-Image Detection Using Fast Neural Processors and Image Decomposition
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.
Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21794439 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting
Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka
Abstract:
This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32764438 Investigation of Some Technical Indexes inStock Forecasting Using Neural Networks
Authors: Myungsook Klassen
Abstract:
Training neural networks to capture an intrinsic property of a large volume of high dimensional data is a difficult task, as the training process is computationally expensive. Input attributes should be carefully selected to keep the dimensionality of input vectors relatively small. Technical indexes commonly used for stock market prediction using neural networks are investigated to determine its effectiveness as inputs. The feed forward neural network of Levenberg-Marquardt algorithm is applied to perform one step ahead forecasting of NASDAQ and Dow stock prices.Keywords: Stock Market Prediction, Neural Networks, Levenberg-Marquadt Algorithm, Technical Indexes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19474437 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers
Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko
Abstract:
The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.
Keywords: Artificial neural networks, fluorescence, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21094436 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.
Keywords: Neural networks, Noise, Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19364435 Novel Approach for Promoting the Generalization Ability of Neural Networks
Authors: Naiqin Feng, Fang Wang, Yuhui Qiu
Abstract:
A new approach to promote the generalization ability of neural networks is presented. It is based on the point of view of fuzzy theory. This approach is implemented through shrinking or magnifying the input vector, thereby reducing the difference between training set and testing set. It is called “shrinking-magnifying approach" (SMA). At the same time, a new algorithm; α-algorithm is presented to find out the appropriate shrinking-magnifying-factor (SMF) α and obtain better generalization ability of neural networks. Quite a few simulation experiments serve to study the effect of SMA and α-algorithm. The experiment results are discussed in detail, and the function principle of SMA is analyzed in theory. The results of experiments and analyses show that the new approach is not only simpler and easier, but also is very effective to many neural networks and many classification problems. In our experiments, the proportions promoting the generalization ability of neural networks have even reached 90%.Keywords: Fuzzy theory, generalization, misclassification rate, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15354434 Accelerating Integer Neural Networks On Low Cost DSPs
Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang
Abstract:
In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17964433 High Impedance Fault Detection using LVQ Neural Networks
Authors: Abhishek Bansal, G. N. Pillai
Abstract:
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22144432 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17404431 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.
Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21024430 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.
Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19194429 Application of Artificial Neural Networks for Temperature Forecasting
Authors: Mohsen Hayati, Zahra Mohebi
Abstract:
In this paper, the application of neural networks to study the design of short-term temperature forecasting (STTF) Systems for Kermanshah city, west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STTF systems is used. Our study based on MLP was trained and tested using ten years (1996-2006) meteorological data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STTF systems.Keywords: Artificial neural networks, Forecasting, Weather, Multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4357