Search results for: Narin Muenrat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Narin Muenrat

2 Decision Rule Induction in a Learning Content Management System

Authors: Nittaya Kerdprasop, Narin Muenrat, Kittisak Kerdprasop

Abstract:

A learning content management system (LCMS) is an environment to support web-based learning content development. Primary function of the system is to manage the learning process as well as to generate content customized to meet a unique requirement of each learner. Among the available supporting tools offered by several vendors, we propose to enhance the LCMS functionality to individualize the presented content with the induction ability. Our induction technique is based on rough set theory. The induced rules are intended to be the supportive knowledge for guiding the content flow planning. They can also be used as decision rules to help content developers on managing content delivered to individual learner.

Keywords: Decision rules, Knowledge induction, Learning content management system, Rough set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation

Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.

Abstract:

The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consuming

Keywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593