Search results for: Metal oxide nanomaterials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1012

Search results for: Metal oxide nanomaterials

802 FEA for Teeth Preparations Marginal Geometry

Authors: L. Sandu, F. Topalâ, S. Porojan

Abstract:

Knowledge of factors, which influence stress and its distribution, is of key importance to the successful production of durable restorations. One of this is the marginal geometry. The objective of this study was to evaluate, by finite element analysis (FEA), the influence of different marginal designs on the stress distribution in teeth prepared for cast metal crowns. Five margin designs were taken into consideration: shoulderless, chamfer, shoulder, sloped shoulder and shoulder with bevel. For each kind of preparation three dimensional finite element analyses were initiated. Maximal equivalent stresses were calculated and stress patterns were represented in order to compare the marginal designs. Within the limitation of this study, the shoulder and beveled shoulder margin preparations of the teeth are preferred for cast metal crowns from biomechanical point of view.

Keywords: finite element, marginal geometry, metal crown

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
801 Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel

Authors: K. Krishnaprasad, Raghu V. Prakash

Abstract:

Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.

Keywords: Dissimilar metal weld, Fatigue Crack Growth, fracture toughness, Infrared thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2852
800 Assessment of Sediment Quality According To Heavy Metal Status in the West Port of Malaysia

Authors: B.Tavakoly Sany, A.H .Sulaiman, GH. Monazami, A. Salleh

Abstract:

Eight heavy metals (Cu, Cr, Zn, Hg, Pb, Cd, Ni and As) were analyzed in sediment samples in the dry and wet seasons from November 2009 to October 2010 in West Port of Peninsular Malaysia. The heavy metal concentrations (mg/kg dry weight) were ranged from 23.4 to 98.3 for Zn, 22.3 to 80 for Pb, 7.4 to 27.6 Cu, 0.244 to 3.53 for Cd, 7.2 to 22.2 for Ni, 20.2 to 162 for As, 0.11 to 0.409 for Hg and 11.5 to 61.5 for Cr. Metals concentrations in dry season were higher than the rainy season except in cupper and chromium. Analysis of variance with Statistical Analysis System (SAS) shows that the mean concentration of metals in the two seasons (α level=0.05) are not significantly different which shows that the metals were held firmly in the matrix of sediment. Also there are significant differences between control point station with other stations. According to the Interim Sediment Quality guidelines (ISQG), the metal concentrations are moderately polluted, except in arsenic which shows the highest level of pollution.

Keywords: Heavy metals, sediment quality guidelines, west port.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751
799 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures

Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa

Abstract:

The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.

Keywords: Carrier-charge-separation, nickel, sulphur, zinc oxide, photoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
798 Gate Tunnel Current Calculation for NMOSFET Based on Deep Sub-Micron Effects

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

Aggressive scaling of MOS devices requires use of ultra-thin gate oxides to maintain a reasonable short channel effect and to take the advantage of higher density, high speed, lower cost etc. Such thin oxides give rise to high electric fields, resulting in considerable gate tunneling current through gate oxide in nano regime. Consequently, accurate analysis of gate tunneling current is very important especially in context of low power application. In this paper, a simple and efficient analytical model has been developed for channel and source/drain overlap region gate tunneling current through ultra thin gate oxide n-channel MOSFET with inevitable deep submicron effect (DSME).The results obtained have been verified with simulated and reported experimental results for the purpose of validation. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range. The proposed model is suitable enough to be used in circuit simulator due to its simplicity. It is observed that neglecting deep sub-micron effect may lead to large error in the calculated gate tunneling current. It is found that temperature has almost negligible effect on gate tunneling current. It is also reported that gate tunneling current reduces with the increase of gate oxide thickness. The impact of source/drain overlap length is also assessed on gate tunneling current.

Keywords: Gate tunneling current, analytical model, gate dielectrics, non uniform poly gate doping, MOSFET, fringing field effect and image charges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
797 Characterization of Responsivity, Sensitivity and Spectral Response in Thin Film SOI photo-BJMOS -FET Compatible with CMOS Technology

Authors: Hai-Qing Xie, Yun Zeng, Yong-Hong Yan, Jian-Ping Zeng, Tai-Hong Wang

Abstract:

Photo-BJMOSFET (Bipolar Junction Metal-Oxide- Semiconductor Field Effect Transistor) fabricated on SOI film was proposed. ITO film is adopted in the device as gate electrode to reduce light absorption. Depletion region but not inversion region is formed in film by applying gate voltage (but low reverse voltage) to achieve high photo-to-dark-current ratio. Comparisons of photoelectriccharacteristics executed among VGK=0V, 0.3V, 0.6V, 0.9V and 1.0V (reverse voltage VAK is equal to 1.0V for total area of 10×10μm2). The results indicate that the greatest improvement in photo-to-dark-current ratio is achieved up to 2.38 at VGK=0.6V. In addition, photo-BJMOSFET is compatible with CMOS integration due to big input resistance

Keywords: Photo-BJMOSFET, Responsivity, Sensitivity, Spectral response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
796 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties

Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO2 nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO2 nanoparticles was characterized from 30 nm to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.

Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
795 The Induction of Antioxidant Enzyme Activities in Cabbage Seedlings by Heavy Metal Stress

Authors: J. Kumchai, J. Z. Huang, C. Y. Lee, F. C. Chen, S. W. Chin

Abstract:

Cabbage seedlings grown in vitro were exposed to excess levels of heavy metals, including Cd, Mo, and Zn. High metal levels affected plant growth at cotyledonary stage. Seedlings under Cd, Mo, and Zn treatments could not produce root hairs and true leaves. Under stress conditions, seedlings accumulated a higher amount of anthocyanins in their cotyledons than those in the control. The pigments isolated from Cd and Zn stressed seedling cotyledons appeared as pink, while under Mo stress, was dark pink or purple. Moreover, excess Mo stress increased antioxidant enzyme activities of APX, CAT, SOD. These results suggest that, under excess Mo stress, the induced antioxidant enzyme activity of cabbage seedlings may function as a protective mechanism to shield the plants from toxicity and exacerbated growth.

Keywords: Anthocyanin, antioxidant enzyme activity, heavy metal, growth inhibition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
794 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method

Authors: Samera Salimpour Abkenar

Abstract:

In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.

Keywords: Eco-friendly, natural dyes, silk, traditional dyeing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
793 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing

Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani

Abstract:

The paper presents an additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.

Keywords: Brazing, Laminated Object Manufacturing, Tensile Lap-Shear Test, Thermo-Mechanical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
792 Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptiloliteby Ion-Exchange Process

Authors: John Kabuba, Hilary Rutto

Abstract:

Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.

Keywords: Clinoptilolite, cobalt and copper, Ion-exchange, mass dosage, pH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
791 A Multistage Sulphidisation Flotation Procedure for a Low Grade Malachite Copper Ore

Authors: Tebogo P. Phetla, Edison Muzenda

Abstract:

This study was carried out to develop a flotation procedure for an oxide copper ore from a Region in Central Africa for producing an 18% copper concentrate for downstream processing at maximum recovery from a 4% copper feed grade. The copper recoveries achieved from the test work were less than 50% despite changes in reagent conditions (multistage sulphidisation, use of RCA emulsion and mixture, use of AM 2, etc). The poor recoveries were attributed to the mineralogy of the ore from which copper silicates accounted for approximately 70% (mass) of the copper minerals in the ore. These can be complex and difficult to float using conventional flotation methods. Best results were obtained using basic sulphidisation procedures, a high flotation temperature and extended flotation residence time.

Keywords: Froth flotation, Sulphidisation, Copper oxide ore, Mineralogy, Recovery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5767
790 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo

Abstract:

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
789 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites

Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci

Abstract:

In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.

Keywords: Magnesium matrix composite, pressure infiltration, SEM, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
788 Refining Waste Spent Hydroprocessing Catalyst and Their Metal Recovery

Authors: Meena Marafi, Mohan S. Rana

Abstract:

Catalysts play an important role in producing valuable fuel products in petroleum refining; but, due to feedstock’s impurities catalyst gets deactivated with carbon and metal deposition. The disposal of spent catalyst falls under the category of hazardous industrial waste that requires strict agreement with environmental regulations. The spent hydroprocessing catalyst contains Mo, V and Ni at high concentrations that have been found to be economically significant for recovery. Metal recovery process includes deoiling, decoking, grinding, dissolving and treatment with complexing leaching agent such as ethylene diamine tetra acetic acid (EDTA). The process conditions have been optimized as a function of time, temperature and EDTA concentration in presence of ultrasonic agitation. The results indicated that optimum condition established through this approach could recover 97%, 94% and 95% of the extracted Mo, V and Ni, respectively, while 95% EDTA was recovered after acid treatment.

Keywords: Spent catalyst, deactivation, hydrotreating, spent catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
787 Impact of Height of Silicon Pillar on Vertical DG-MOSFET Device

Authors: K. E. Kaharudin, A. H. Hamidon, F. Salehuddin

Abstract:

Vertical Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is believed to suppress various short channel effect problems. The gate to channel coupling in vertical DG-MOSFET are doubled, thus resulting in higher current density. By having two gates, both gates are able to control the channel from both sides and possess better electrostatic control over the channel. In order to ensure that the transistor possess a superb turn-off characteristic, the subs-threshold swing (SS) must be kept at minimum value (60-90mV/dec). By utilizing SILVACO TCAD software, an n-channel vertical DG-MOSFET was successfully designed while keeping the sub-threshold swing (SS) value as minimum as possible. From the observation made, the value of sub-threshold swing (SS) was able to be varied by adjusting the height of the silicon pillar. The minimum value of sub-threshold swing (SS) was found to be 64.7mV/dec with threshold voltage (VTH) of 0.895V. The ideal height of the vertical DG-MOSFET pillar was found to be at 0.265 µm.

Keywords: DG-MOSFET, pillar, SCE, vertical

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
786 Advantages of Vibration in the GMAW Process for Improving the Quality and Mechanical Properties

Authors: C. A. C. Castro, D. C. Urashima, E. P. Silva, P. M. L.Silva

Abstract:

Since 1920, the industry has almost completely changed the rivets production techniques for the manufacture of permanent welding join production of structures and manufacture of other products. The welding arc is the process more widely used in industries. This is accomplished by the heat of an electric arc which melts the base metal while the molten metal droplets are transferred through the arc to the welding pool, protected from the atmosphere by a gas curtain. The GMAW (Gas metal arc welding) process is influenced by variables such as: current, polarity, welding speed, electrode: extension, position, moving direction; type of joint, welder's ability, among others. It is remarkable that the knowledge and control of these variables are essential for obtaining satisfactory quality welds, knowing that are interconnected so that changes in one of them requiring changes in one or more of the other to produce the desired results. The optimum values are affected by the type of base metal, the electrode composition, the welding position and the quality requirements. Thus, this paper proposes a new methodology, adding the variable vibration through a mechanism developed for GMAW welding, in order to improve the mechanical and metallurgical properties which does not affect the ability of the welder and enables repeatability of the welds made. For confirmation metallographic analysis and mechanical tests were made.

Keywords: HAZ, GMAW, vibration, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
785 Current Starved Ring Oscillator Image Sensor

Authors: Devin Atkin, Orly Yadid-Pecht

Abstract:

The continual demands for increasing resolution and dynamic range in complimentary metal-oxide semiconductor (CMOS) image sensors have resulted in exponential increases in the amount of data that need to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.

Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74
784 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: Aqueous emulsion, graphene, nanocomposites, thermal characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
783 Characterization of the LMOS with Different Channel Structure

Authors: Hung-Pei Hsu, Jyi-Tsong Lin, Po-Hsieh Lin, Cheng-Hsien Chang, Ming-Tsung Shih, Chan-Hsiang Chang, Shih-Chuan Tseng, Min-Yan Lin, Shih-Wen Hsu

Abstract:

In this paper, we propose a novel metal oxide semiconductor field effect transistor with L-shaped channel structure (LMOS), and several type of L-shaped structures are also designed, studied and compared with the conventional MOSFET device for the same average gate length (Lavg). The proposed device electrical characteristics are analyzed and evaluated by three dimension (3-D) ISE-TCAD simulator. It can be confirmed that the LMOS devices have higher on-state drain current and both lower drain-induced barrier lowering (DIBL) and subthreshold swing (S.S.) than its conventional counterpart has. In addition, the transconductance and voltage gain properties of the LMOS are also improved.

Keywords: Average gate length (Lavg), drain-induced barrier lowering (DIBL), L-shaped channel MOSFET (LMOS), subthreshold swing (S.S.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
782 Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
781 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure

Authors: M. Battira, R. Bessaih

Abstract:

We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.

Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
780 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting

Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh

Abstract:

In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).

Keywords: Windrow, swine manure, ammonia, nitrous oxide, fluxes, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
779 Introduction of Hyperaccumulator Plants with Phytoremediation Potential of a Lead- Zinc Mine in Iran

Authors: M. Cheraghi, B. Lorestani, N. Yousefi

Abstract:

Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metalcontaminated sites. A major step towards the development of phytoremediation of heavy metal impacted soils is the discovery of the heavy metal hyperaccumulation in plants. In this study, the several established criteria to define a hyperaccumulator plant were applied. The case study was represented by a mining area in Hamedan province in the central west part of Iran. Obtained results showed that the most of sampled species were able to grow on heavily metal-contaminated soils and also were able to accumulate extraordinarily high concentrations of some metals such as Zn, Mn, Cu, Pb and Fe. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of some measured heavy metals and, therefore, they have suitable potential for phytoremediation of contaminated soils.

Keywords: Enrichment factor, Heavy metals, Hyperaccumulator, Phytoremediation, Translocation factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
778 Hydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method

Authors: Neslihan Yuca, Nilgün Karatepe

Abstract:

The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. Purification process of SWCNTs was fulfilled by microwave digestion at three different temperatures (120, 150 and 200 °C), three different acid concentrations (0.5, 1 and 1.5 M) and for three different time intervals (15, 30 and 60 min). Nitric acid (HNO3) was used in the removal of the metal catalysts. The hydrogen storage capacities of the purified materials were measured using volumetric method at the liquid nitrogen temperature and gas pressure up to 100 bar. The effects of the purification conditions such as temperature, time and acid concentration on hydrogen adsorption were investigated.

Keywords: Carbon nanotubes, purification, microwavedigestion, hydrogen storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
777 Metal-Semiconductor-Metal Photodetector Based On Porous In0.08Ga0.92N

Authors: Saleh H. Abud, Z. Hassan, F. K. Yam

Abstract:

Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.

Keywords: Porous InGaN, photoluminescence, SMS photodetector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
776 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells

Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi

Abstract:

In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.

Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
775 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

Authors: Merve Küçük, M. Lütfi Öveçoğlu

Abstract:

Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.

Keywords: Dip coating, polyester fabrics, sol-gel, zinc oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
774 Effect of Heat Treatment on the Phase Formation of La0.6Sr0.4CoO3-α

Authors: A. A. Samat, N. A. Abdullah, M. A. M. Ishak, N. Osman

Abstract:

Powder of La0.6Sr0.4CoO3-α (LSCO) was synthesized by a combined citrate-EDTA method. The as-synthesized LSCO powder was calcined, respectively at temperatures of 800, 900 and 1000 °C with different heating/cooling rates which are 2, 5, 10 and 15 °C min-1. The effects of heat treatments on the phase formation of perovskite phase of LSCO were investigated by powder X-ray diffraction (XRD). The XRD patterns revealed that the rate of 5 °C min-1 is the optimum heating/cooling rate to obtain a single perovskite phase of LSCO with calcination temperature of 800 °C. This result was confirmed by a thermogravimetric analysis (TGA) as it showed a complete decomposition of intermediate compounds to form oxide material was also observed at 800 °C.

Keywords: La0.6Sr0.4CoO3-α, heat treatment, perovskite-type oxide, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4347
773 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.

Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757