Search results for: Medical Resonance (MR) images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1806

Search results for: Medical Resonance (MR) images

1806 Subjective Versus Objective Assessment for Magnetic Resonance Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1805 Automatic Segmentation of Thigh Magnetic Resonance Images

Authors: Lorena Urricelqui, Armando Malanda, Arantxa Villanueva

Abstract:

Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our 'goal standard'. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.

Keywords: Segmentation, thigh, magnetic resonance image, fat, muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1804 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1803 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
1802 Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications

Authors: Seddeq E. Ghrare, Salahaddin M. Shreef

Abstract:

Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.

Keywords: Medical Image, Magnetic Resonance Imaging, Image Compression, Discrete Wavelet Transform, Telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977
1801 Medical Imaging Techniques in Clinical Medicine

Authors: Sharan Badiger, Prema T. Akkasaligar

Abstract:

Medical imaging technology has experienced a dramatic change in the last few years. Medical imaging refers to the techniques and processes used to create images of the human body (or parts thereof) for various clinical purposes such as medical procedures and diagnosis or medical science including the study of normal anatomy and function. With the growth of computers and image technology, medical imaging has greatly influenced the medical field. The diagnosis of a health problem is now highly dependent on the quality and the credibility of the image analysis. This paper deals with the various aspects and types of medical imaging.

Keywords: Computed Tomography, Echocardiography, Medical Imaging, Magnetic Resonance, Ultrasound Imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3570
1800 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
1799 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images

Authors: Maninder Pal

Abstract:

Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.

Keywords: Zooming, interpolation, medical images, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1798 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images

Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan

Abstract:

This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.

Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
1797 Medical Image Edge Detection Based on Neuro-Fuzzy Approach

Authors: J. Mehena, M. C. Adhikary

Abstract:

Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.

Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1796 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
1795 Impulse Noise Reduction in Brain Magnetic Resonance Imaging Using Fuzzy Filters

Authors: Benjamin Y. M. Kwan, Hon Keung Kwan

Abstract:

Noise contamination in a magnetic resonance (MR) image could occur during acquisition, storage, and transmission in which effective filtering is required to avoid repeating the MR procedure. In this paper, an iterative asymmetrical triangle fuzzy filter with moving average center (ATMAVi filter) is used to reduce different levels of salt and pepper noise in a brain MR image. Besides visual inspection on filtered images, the mean squared error (MSE) is used as an objective measurement. When compared with the median filter, simulation results indicate that the ATMAVi filter is effective especially for filtering a higher level noise (such as noise density = 0.45) using a smaller window size (such as 3x3) when operated iteratively or using a larger window size (such as 5x5) when operated non-iteratively.

Keywords: Brain images, Fuzzy filters, Magnetic resonance imaging, Salt and pepper noise reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
1794 Medical Image Fusion Based On Redundant Wavelet Transform and Morphological Processing

Authors: P. S. Gomathi, B. Kalaavathi

Abstract:

The process in which the complementary information from multiple images is integrated to provide composite image that contains more information than the original input images is called image fusion. Medical image fusion provides useful information from multimodality medical images that provides additional information to the doctor for diagnosis of diseases in a better way. This paper represents the wavelet based medical image fusion algorithm on different multimodality medical images. In order to fuse the medical images, images are decomposed using Redundant Wavelet Transform (RWT). The high frequency coefficients are convolved with morphological operator followed by the maximum-selection (MS) rule. The low frequency coefficients are processed by MS rule. The reconstructed image is obtained by inverse RWT. The quantitative measures which includes Mean, Standard Deviation, Average Gradient, Spatial frequency, Edge based Similarity Measures are considered for evaluating the fused images. The performance of this proposed method is compared with Pixel averaging, PCA, and DWT fusion methods. When compared with conventional methods, the proposed framework provides better performance for analysis of multimodality medical images.

Keywords: Discrete Wavelet Transform (DWT), Image Fusion, Morphological Processing, Redundant Wavelet Transform (RWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
1793 Content Based Image Retrieval of Brain MR Images across Different Classes

Authors: Abraham Varghese, Kannan Balakrishnan, Reji R. Varghese, Joseph S. Paul

Abstract:

Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved.

Keywords: Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
1792 An Authoring Tool for Vibrotactile Images

Authors: Da-Hye Kim, Won-Hyung Park, In-Ho Yun, Jeong Cheol Kim, Sang-Youn Kim

Abstract:

This paper presents an authoring tool which makes a user easily and intuitively design vibrotactile sensation. A mobile hardware platform powered by ANDROID, a multi-purpose haptic driver and a linear resonance actuator are used to implement the system of the presented authoring tool. The tool allows users to easily and simply create a vibrotactile sensation by drawing vibrotactile images and to feel the sensation by rubbing drawn images on the touch screen of a mobile device. The tool supports a graphical interface for designing, editing and playing vibrotactile images as well as a pre-defined file format for save and open.

Keywords: authoring tool, mobile device, vibrotactile pattern, vibrotactile sensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
1791 Non-Rigid Registration of Medical Images Using an Automated Method

Authors: Panos Kotsas

Abstract:

This paper presents the application of a signal intensity independent registration criterion for non-rigid body registration of medical images. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the ratios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation. The geometric transformation model adopted is a local cubic B-splines based model.

Keywords: Medical image, non-rigid, registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1790 3D Brain Tumor Segmentation Using Level-Sets Method and Meshes Simplification from Volumetric MR Images

Authors: K. Aloui, M. S. Naceur

Abstract:

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.

Keywords: Medical imaging, level-sets, compression, meshess implification, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
1789 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
1788 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
1787 3D Segmentation, Compression and Wireless Transmission of Volumetric Brain MR Images

Authors: K. Aloui, M. S. Naceur

Abstract:

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images and set up compression-transmit schemes to distribute result to the remote doctor. To achieve this goal, we use basically a level-sets approach to delineating brain tumors in threedimensional. Then introduce a new compression and transmission plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by wireless network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.

Keywords: Medical imaging, level-sets, compression, meshessimplification, telemedicine, wireless transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
1786 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: Features extraction, image segmentation, medical images, tumour detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
1785 ROI Based Embedded Watermarking of Medical Images for Secured Communication in Telemedicine

Authors: Baisa L. Gunjal, Suresh N. Mali

Abstract:

Medical images require special safety and confidentiality because critical judgment is done on the information provided by medical images. Transmission of medical image via internet or mobile phones demands strong security and copyright protection in telemedicine applications. Here, highly secured and robust watermarking technique is proposed for transmission of image data via internet and mobile phones. The Region of Interest (ROI) and Non Region of Interest (RONI) of medical image are separated. Only RONI is used for watermark embedding. This technique results in exact recovery of watermark with standard medical database images of size 512x512, giving 'correlation factor' equals to 1. The correlation factor for different attacks like noise addition, filtering, rotation and compression ranges from 0.90 to 0.95. The PSNR with weighting factor 0.02 is up to 48.53 dBs. The presented scheme is non blind and embeds hospital logo of 64x64 size.

Keywords: Compression, DWT, ROI, Scrambling, Vertices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
1784 Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-Kernel Fuzzy C-Means Algorithm

Authors: J. Mehena, M. C. Adhikary

Abstract:

In this paper, a spatial multiple-kernel fuzzy C-means (SMKFCM) algorithm is introduced for segmentation problem. A linear combination of multiples kernels with spatial information is used in the kernel FCM (KFCM) and the updating rules for the linear coefficients of the composite kernels are derived as well. Fuzzy cmeans (FCM) based techniques have been widely used in medical image segmentation problem due to their simplicity and fast convergence. The proposed SMKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in medical image segmentation and detection of MR images. To evaluate the robustness of the proposed segmentation algorithm in noisy environment, we add noise in medical brain tumor MR images and calculated the success rate and segmentation accuracy. From the experimental results it is clear that the proposed algorithm has better performance than those of other FCM based techniques for noisy medical MR images.

Keywords: Clustering, fuzzy C-means, image segmentation, MR images, multiple kernels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1783 Automatic Image Alignment and Stitching of Medical Images with Seam Blending

Authors: Abhinav Kumar, Raja Sekhar Bandaru, B Madhusudan Rao, Saket Kulkarni, Nilesh Ghatpande

Abstract:

This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together using the new triangular averaging based blending algorithm. The quality of the resultant image is tested for photometric inconsistencies and geometric misalignments. This method cannot correct rotational, scale and perspective artifacts.

Keywords: Histogram Matching, Image Alignment, ImageStitching, Medical Imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3760
1782 Object Localization in Medical Images Using Genetic Algorithms

Authors: George Karkavitsas, Maria Rangoussi

Abstract:

We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.

Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1781 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: Integral production, level set method, morphological operation, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4232
1780 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina M. R. Caridade, Ana Rita F. Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14
1779 A Lossless Watermarking Based Authentication System For Medical Images

Authors: Samia Boucherkha, Mohamed Benmohamed

Abstract:

In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.

Keywords: Medical Imaging, Invertible Watermarking, Authentication, Integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
1778 XML Integration of Data from CloudSat Satellite and GMS-6 Water Vapor Satellite

Authors: W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

This study aimed at developing visualization tools for integrating CloudSat images and Water Vapor Satellite images. KML was used for integrating data from CloudSat Satellite and GMS-6 Water Vapor Satellite. CloudSat 2D images were transformed into 3D polygons in order to achieve 3D images. Before overlaying the images on Google Earth, GMS-6 water vapor satellite images had to be rescaled into linear images. Web service was developed using webMathematica. Shoreline from GMS-6 images was compared with shoreline from LandSat images on Google Earth for evaluation. The results showed that shoreline from GMS-6 images was highly matched with the shoreline in LandSat images from Google Earth. For CloudSat images, the visualizations were compared with GMS-6 images on Google Earth. The results showed that CloudSat and GMS-6 images were highly correlated.

Keywords: CloudSat, Water vapor, Satellite images, GoogleEarth™.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1777 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341