Search results for: Magnetic Flux
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 636

Search results for: Magnetic Flux

396 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng

Abstract:

This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: Microfluidics, forced convection, thermal creep, second-order boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
395 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow estimating the main technological spreads and determining the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: Induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
394 Magnetic Fluid Based Squeeze Film in Rough Rotating Curved Porous Annular Plates: Deformation Effect

Authors: M. E. Shimpi, G. M. Deheri

Abstract:

This article aims to investigate the performance of a magnetic fluid based squeeze film between rotating transversely rough curved porous annular plates incorporating the effect of elastic deformation. The associated stochastically averaged Reynolds type equation is solved to obtain the pressure distribution leading to the calculation of the load carrying capacity. The results suggest that the transverse roughness of the bearing surfaces affects the performance adversely although the bearing systems register a relatively improved performance due to the magnetization. The deformation causes reduced the load carrying capacity while the curvature parameters tend to nominally increase the load carrying capacity. Besides, the adverse effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetization and the curvature parameters in the case of negatively skewed roughness by suitably choosing the rotational inertia and the aspect ratio, which becomes significant when negative variance occurs.

Keywords: Annular plates curved rough surface, deformation, load carrying capacity, rotational inertia, magnetic fluid, squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
393 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators

Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho

Abstract:

Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.

Keywords: Direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
392 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers

Authors: N. K. Singh

Abstract:

In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.

Keywords: Heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
391 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
390 Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.

Keywords: Tokamak, sensors, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
389 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
388 Discontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter

Authors: W. Lai, A. A. Khan

Abstract:

A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing Runge- Kutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-dimensional shallow water equations. For each slope limiter, three different Riemann solvers based on HLL, LF, and Roe flux functions are used. The proposed water surface based slope limiter scheme is easy to implement and shows better conservation property compared to the slope limiter based on water depth. Of the three flux functions, the Roe approximation provides the best results while the LF function proves to be least suitable when used with either slope limiter scheme.

Keywords: Discontinuous finite element, TVD Runge-Kuttascheme, slope limiters, Riemann solvers, shallow water flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
387 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

Authors: Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.

Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
386 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
385 Effect of Operating Conditions on Forward Osmosis for Nutrient Rejection Using Magnesium Chloride as a Draw Solution

Authors: Yatnanta Padma Devia, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine

Abstract:

Advanced treatments such as forward osmosis (FO) can be used to separate or reject nutrients from secondary treated effluents. Forward osmosis uses the chemical potential across the membrane, which is the osmotic pressure gradient, to induce water to flow through the membrane from a feed solution (FS) into a draw solution (DS). The performance of FO is affected by the membrane characteristics, composition of the FS and DS, and operating conditions. The aim of this study was to investigate the optimum velocity and temperature for nutrient rejection and water flux performance in FO treatments. MgCl2 was used as the DS in the FO process. The results showed that higher cross flow velocities yielded higher water fluxes. High rejection of nutrients was achieved by using a moderate cross flow velocity at 0.25 m/s. Nutrient rejection was insensitive to temperature variation, whereas water flux was significantly impacted by it. A temperature of 25°C was found to be good for nutrient rejection.

Keywords: Cross flow velocity, forward osmosis, magnesium chloride, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
384 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle

Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada

Abstract:

In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.

Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
383 Heat Transfer to Laminar Flow over a Double Backward-Facing Step

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin

Abstract:

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m2.

Keywords: Laminar flow, Double backward, Separation flow, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
382 Single-qubit Quantum Gates using Magneto-optic Kerr Effect

Authors: Pradeep Kumar K

Abstract:

We propose the use of magneto-optic Kerr effect (MOKE) to realize single-qubit quantum gates. We consider longitudinal and polar MOKE in reflection geometry in which the magnetic field is parallel to both the plane of incidence and surface of the film. MOKE couples incident TE and TM polarized photons and the Hamiltonian that represents this interaction is isomorphic to that of a canonical two-level quantum system. By varying the phase and amplitude of the magnetic field, we can realize Hadamard, NOT, and arbitrary phase-shift single-qubit quantum gates. The principal advantage is operation with magnetically non-transparent materials.

Keywords: Quantum computing, qubit, magneto-optic kerr effect (MOKE), magneto-optical interactions, continuous variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
381 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic

Abstract:

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3809
380 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4123
379 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
378 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
377 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: Hard magnet, Sr-ferrite, Sol-gel auto-combustion, Nano-powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3681
376 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
375 Magnetoplasmadynamic Thruster Design and Characteristics

Authors: A. Almuwallad

Abstract:

The magnetoplasmadynamic (MPD) thruster is classified as an electric propulsion system and consists of two metal electrodes separated by an insulator. A high-current electric arc is driven between electrodes to ionize the injected propellant between electrodes for plasma creation. At the same time, a magnetic field is generated by the electric current returning to the power supply. This magnetic field interacts with the electric current flowing through the plasma to produce thrust. This paper compares the performance of MPD thrusters when using three different propellants (methane, nitrogen, and propane) at varying input mass flow rates. Methane provided the best performance, and nitrogen performed better than propane. In addition, when using the same parameters, the thruster with a divergent nozzle performed better than the thruster with a constant nozzle.

Keywords: Magnetoplasmadynamic thruster, electric propulsion, propellant, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
374 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Steady-state, transient, natural convection, Rayleigh number, Nusselt number, Fourier Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
373 Marangoni Instability in a Fluid Layer with Insoluble Surfactant

Authors: Ainon Syazana Ab. Hamid, Seripah Awang Kechil, Ahmad Sukri Abd. Aziz

Abstract:

The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.

Keywords: Analytical solutions, Marangoni Instability, Nondeformable free surface, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
372 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: Conduction, inverse problems, conjugated gradient method, laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
371 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device

Authors: M. Hoseinnezhad, K. Gharanjig

Abstract:

Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.

Keywords: Dye-sensitized solar cells, Indoline dye, nanostructure, oxidation potential, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
370 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images

Authors: Sara A.Yones, Ahmed S. Moussa

Abstract:

Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.

Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
369 Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences

Authors: María S. Avila-García, John N. Carter, Robert I. Damper

Abstract:

An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.

Keywords: Vocal tract imaging, speech production, active shapemodels, dynamic Hough transform, object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
368 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: Climbing robot, dipole antenna, Ground Penetrating Radar (GPR), mobile robots, robotic GPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
367 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560