Search results for: Leakage vortex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 257

Search results for: Leakage vortex

227 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour

Authors: A. M. Maqableh

Abstract:

Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.

Keywords: Fluid Coupling, Mathematical Modelling, partially filled.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
226 Numerical and Experimental Study of Flow from a Leaking Buried Pipe in an Unsaturated Porous Media

Authors: S.M.Hosseinalipour, H.Aghakhani

Abstract:

Considering the numerous applications of the study of the flow due to leakage in a buried pipe in unsaturated porous media, finding a proper model to explain the influence of the effective factors is of great importance.There are various important factors involved in this type of flow such as: pipe leakage size and location, burial depth, the degree of the saturation of the surrounding porous medium, characteristics of the porous medium, fluid type and pressure of the upstream.In this study, the flow through unsaturated porous media due to leakage of a buried pipe for up and down leakage location is studied experimentally and numerically and their results are compared. Study results show that Darcy equation together with BCM method (for calculating the relative permeability) have suitable ability for predicting the flow due to leakage of buried pipes in unsaturated porous media.

Keywords: Buried, Leaking pipe, Porous media, Unsaturated

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
225 Reduction of Leakage Power in Digital Logic Circuits Using Stacking Technique in 45 Nanometer Regime

Authors: P.K. Sharma, B. Bhargava, S. Akashe

Abstract:

Power dissipation due to leakage current in the digital circuits is a biggest factor which is considered specially while designing nanoscale circuits. This paper is exploring the ideas of reducing leakage current in static CMOS circuits by stacking the transistors in increasing numbers. Clearly it means that the stacking of OFF transistors in large numbers result a significant reduction in power dissipation. Increase in source voltage of NMOS transistor minimizes the leakage current. Thus stacking technique makes circuit with minimum power dissipation losses due to leakage current. Also some of digital circuits such as full adder, D flip flop and 6T SRAM have been simulated in this paper, with the application of reduction technique on ‘cadence virtuoso tool’ using specter at 45nm technology with supply voltage 0.7V.

Keywords: Stack, 6T SRAM cell, low power, threshold voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364
224 Statistical Description in the Turbulent Near Wake of a Rotating Circular Cylinder

Authors: Sharul S. Dol, U. Azimov, Robert J. Martinuzzi

Abstract:

Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream. The interest was to examine the turbulence properties at the suppression of periodicity in vortex formation process. An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 9000 for velocity ratios, λ between 0 and 2.7. Hot-wire anemometry and particle image velocimetry results indicate that the rotation of the cylinder causes significant changes in the vortical activities. The turbulence quantities are getting smaller as λ increases due to suppression of coherent vortex structures.

Keywords: Rotating circular cylinder, Reynolds stress, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
223 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators

Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho

Abstract:

Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.

Keywords: Direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
222 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
221 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber

Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko

Abstract:

The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.

Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
220 Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed

Authors: Yiming Jin, Yuanhao Gao

Abstract:

In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative.

Keywords: Vortex-induced vibrations, marine pipeline, seabed, sub-harmonic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
219 Experimental Study of Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Inner Threaded Body

Authors: Gürol Önal, Kevser Dincer

Abstract:

In this experimental study, performance of a counter flow Ranque-Hilsch vortex tube (RHVT) with threads cut on its inner surface was investigated experimentally (pitch is 1 and 2 mm). The inner diameter of the vortex tube used was D=9 mm and the ratio of the tube’s length to diameter was L/D=12. The experimental system was a thermodynamic open system. Flow was controlled by a valve on the hot outlet side, where the valve was changed from a nearly closed position to its nearly open position. Fraction of cold flow (ξ) = 0.1-0.9, was determined under 300 and 350 kPa pressurized air. All experimental data were compared with each other, the maximum heating performance of the RHVT system was found to be 38.2 oC and the maximum cooling performance of the RHVT in this study was found to be -30.9 oC at pitch 1 mm.

Keywords: Ranque-Hilsch vortex tube, heating, cooling, temperature separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
218 A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems

Authors: Md. Noman Habib Khan, S. Khan, T. S. Gunawan, R. I. Boby

Abstract:

The photovoltaic (PV) panel with no galvanic isolation system is well known technique in the world which is effective and delivers power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas when as the resulting power gets connected to electronic load installation instead of being tied to the grid. Though very small, even then transformer-less topology is shown to be with leakage in pico-ampere range. By using PWM technique PWM, leakage current in different situations is shown. The results shown in this paper show how the pico-ampere current is reduced to femto-ampere through use of inductors and capacitors of suitable values of inductor and capacitors with the load.

Keywords: Photovoltaic (PV) panel, Duty cycle, Pulse Duration Modulation (PDM), Leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
217 Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder

Authors: T. Li, J.Y. Zhang, W.H. Zhang, M.H. Zhu

Abstract:

A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is achieved by the spring moving mesh technology. Considering vortex-induced vibration with the low reduced damping parameter, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The phenomena of locked-in, beat and phases-witch were captured successfully. The evolution of vortex shedding from the cylinder with time is discussed. There are very similar trends in characteristics between the results of the one degree of freedom cylinder model and that of the two degree of freedom cylinder model. The streamwise vibrations have a certain effect on the lateral vibrations and their characteristics.

Keywords: Fluid-structure interaction, Navier-Stokes equation, Space-time finite element method, vortex-induced vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
216 A Novel Nano-Scaled SRAM Cell

Authors: Arash Azizi Mazreah, Mohammad Reza Sahebi, Mohammad T. Manzuri Shalmani

Abstract:

To help overcome limits to the density of conventional SRAMs and leakage current of SRAM cell in nanoscaled CMOS technology, we have developed a four-transistor SRAM cell. The newly developed CMOS four-transistor SRAM cell uses one word-line and one bit-line during read/write operation. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 19% smaller than a conventional six-transistor cell using same design rules. Also the leakage current of new cell is 60% smaller than a conventional sixtransistor SRAM cell. Simulation result in 65nm CMOS technology shows new cell has correct operation during read/write operation and idle mode.

Keywords: SRAM Cell, leakage current, cell area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
215 A Novel Source/Drain-to-Gate Non-overlap MOSFET to Reduce Gate Leakage Current in Nano Regime

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

In this paper, gate leakage current has been mitigated by the use of novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure for the first time. A compact analytical model has been developed to study the gate leakage behaviour of proposed MOSFET structure. The result obtained has found good agreement with the Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance.

Keywords: Gate tunneling current, analytical model, spacer dielectrics, DIBL, subthreshold slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
214 Vortex Formation in Lid-driven Cavity with Disturbance Block

Authors: Maysam Saidi, Hassan Basirat Tabrizi, Reza Maddahian

Abstract:

In this paper, numerical simulations are performed to investigate the effect of disturbance block on flow field of the classical square lid-driven cavity. Attentions are focused on vortex formation and studying the effect of block position on its structure. Corner vortices are different upon block position and new vortices are produced because of the block. Finite volume method is used to solve Navier-Stokes equations and PISO algorithm is employed for the linkage of velocity and pressure. Verification and grid independency of results are reported. Stream lines are sketched to visualize vortex structure in different block positions.

Keywords: Disturbance Block, Finite Volume Method, Lid-Driven Cavity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
213 Speedup of Data Vortex Network Architecture

Authors: Qimin Yang

Abstract:

In this paper, 3X3 routing nodes are proposed to provide speedup and parallel processing capability in Data Vortex network architectures. The new design not only significantly improves network throughput and latency, but also eliminates the need for distributive traffic control mechanism originally embedded among nodes and the need for nodal buffering. The cost effectiveness is studied by a comparison study with the previously proposed 2- input buffered networks, and considerable performance enhancement can be achieved with similar or lower cost of hardware. Unlike previous implementation, the network leaves small probability of contention, therefore, the packet drop rate must be kept low for such implementation to be feasible and attractive, and it can be achieved with proper choice of operation conditions.

Keywords: Data Vortex, Packet Switch, Interconnection network, deflection, Network-on-chip

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
212 Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device

Authors: Terrance Charles, Zhiyin Yang, Yiling Lu

Abstract:

Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.

Keywords: Aerodynamic drag, cross vortex trap device, truck, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
211 Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number

Authors: Aung Myo Thu, Sang Eon Jeon, Yung Hwan Byun, Soo Hyung Park

Abstract:

The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle image velocimetry (PIV) and CFD tools were used and it was found out that dynamic stall separation (DSS), which is separated from leading edge separation (LES) and trailing edge separation (TES), triggered the dynamic stall vortex (DSV).

Keywords: Airfoil Flow, CFD, PIV, Dynamic Stall, Flow Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
210 Application of Vortex Tubes for Extracting Sediments Using SHARC Software - A Case Study of the Western Canal in the Dez Diversion Weir

Authors: A. H. Sajedi Pour, N. Hedayat, Z. Yazdi

Abstract:

Sediment loads transfer in hydraulic installations and their consequences for the O&M of modern canal systems is emerging as one of the most important considerations in hydraulic engineering projects apriticularly those which are inteded to feed the irrigation and draiange schemes of large command areas such as the Dez and Mogahn in Iran.. The aim of this paper is to investigate the applicability of the vortex tube as a viable means of extracting sediment loads entering the canal systems in general and the water inatke structures in particulars. The Western conveyance canal of the Dez Diversion weir which feeds the Karkheh Flood Plain in Sothwestern Dezful has been used as the case study using the data from the Dastmashan Hydrometric Station. The SHARC software has been used as an analytical framework to interprete the data. Results show that given the grain size D50 and the canal turbulence the adaption length from the beginning of the canal and after the diversion dam is estimated at 477 m, a point which is suitable for laying the vortex tube.

Keywords: Vortex tube, sediments, western canal, SHARCmodel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
209 Global Exponential Stability of Impulsive BAM Fuzzy Cellular Neural Networks with Time Delays in the Leakage Terms

Authors: Liping Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Global exponential stability, bidirectional associative memory, fuzzy cellular neural networks, leakage delays, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
208 The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels

Authors: Esam M. Alawadhi, Raed I. Bourisli

Abstract:

Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.

Keywords: Vortex shedding, pulsating flow, wavy channel, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
207 Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator

Authors: Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon

Abstract:

The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested.

Keywords: End effects, end leakage flux, permanent magnet machine, spoke type rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
206 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
205 Off-State Leakage Power Reduction by Automatic Monitoring and Control System

Authors: S. Abdollahi Pour, M. Saneei

Abstract:

This paper propose a new circuit design which monitor total leakage current during standby mode and generates the optimal reverse body bias voltage, by using the adaptive body bias (ABB) technique to compensate die-to-die parameter variations. Design details of power monitor are examined using simulation framework in 65nm and 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 10 μW for 32nm technology and about 12 μW for 65nm technology at the same power supply voltage as the core power supply. Moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop.

Keywords: leakage current, leakage power monitor, body biasing, low power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
204 Vortex-Shedding Suppression in Mixed Convective Flow past a Heated Square Cylinder

Authors: A. Rashid, N. Hasan

Abstract:

The present study investigates numerically the phenomenon of vortex-shedding and its suppression in twodimensional mixed convective flow past a square cylinder under the joint influence of buoyancy and free-stream orientation with respect to gravity. The numerical experiments have been conducted at a fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, while Richardson number (Ri) is varied from 0 to 1.6 and freestream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o corresponding to an upward flow and 90o representing a cross-flow scenario, respectively. The continuity, momentum and energy equations, subject to Boussinesq approximation, are discretized using a finite difference method and are solved by a semi-explicit pressure correction scheme. The critical Richardson number, leading to the suppression of the vortex-shedding (Ric), is estimated by using Stuart-Landau theory at various free-stream orientations and the neutral curve is obtained in the Ri-α plane. The neutral curve exhibits an interesting non-monotonic behavior with Ric first increasing with increasing values of α upto 45o and then decreasing till 70o. Beyond 70o, the neutral curve again exhibits a sharp increasing asymptotic trend with Ric approaching very large values as α approaches 90o. The suppression of vortex shedding is not observed at α = 90o (cross-flow). In the unsteady flow regime, the Strouhal number (St) increases with the increase in Richardson number.

Keywords: bluff body, buoyancy, free-stream orientation, vortex-shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
203 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: G. M. Ozkan, H. Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: Bluff body, flow control, permeable plate, PIV, VIV, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
202 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: Boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
201 An Investigation into Turbine Blade Tip Leakage Flows at High Speeds

Authors: Z. Saleh, E. J. Avital, T. Korakianitis

Abstract:

The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the tip wall and provide flow visualization. RANS computations were carried to provide further insight into the mean flow behavior and to calculate the discharge coefficient which is a measure of the flow leaking over the tip. It is shown that in both geometries of tip the flow separates over the tip to form a separation bubble. The bubble is higher for the cavity tip while a complete shock wave system of oblique waves ending with a normal wave can be seen for the flat tip. The discharge coefficient for the flat tip shows less dependence on the pressure ratio over the blade tip than the cavity tip. However, the discharge coefficient for the cavity tip is lower than that of the flat tip, showing a better ability to reduce the leakage flow and thus increase the turbine efficiency.

Keywords: Gas turbine, blade tip leakage flow, transonic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
200 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding

Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen

Abstract:

Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.

Keywords: Boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
199 Improved Neutron Leakage Treatment on Nodal Expansion Method for PWR Reactors

Authors: Antonio Carlos Marques Alvim, Fernando Carvalho da Silva, Aquilino Senra Martinez

Abstract:

For a quick and accurate calculation of spatial neutron distribution in nuclear power reactors 3D nodal codes are usually used aiming at solving the neutron diffusion equation for a given reactor core geometry and material composition. These codes use a second order polynomial to represent the transverse leakage term. In this work, a nodal method based on the well known nodal expansion method (NEM), developed at COPPE, making use of this polynomial expansion was modified to treat the transverse leakage term for the external surfaces of peripheral reflector nodes. The proposed method was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of this modified treatment of peripheral nodes for practical purposes in PWR reactors.

Keywords: Transverse leakage, nodal expansion method, power density, PWR reactors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
198 Self-Excited Vibration in Hydraulic Ball Check Valve

Authors: L. Grinis, V. Haslavsky, U. Tzadka

Abstract:

This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.

Keywords: Check-valve, vibration, vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788