Search results for: Jaakko Parviainen
3 Tablet Computer as a User Interface: Intelligent Solutions for Multifunctional Hardcopy Devices
Authors: Jaakko Parviainen, Keijo Haataja, Antti Väänänen, Pekka Toivanen
Abstract:
Tablet computers and Multifunctional Hardcopy Devices (MHDs) are common devices in daily life. Though, many scientific studies have not been published. The tablet computers are straightforward to use whereas the MHDs are comparatively difficult to use. Thus, to assist different levels of users, we propose combining these two devices to achieve straightforward intelligent user interface (UI) and versatile What You See Is What You Get (WYSIWYG) document management and production. Our approach to this issue is to design an intelligent user dependent UI for a MHD applying a tablet computer. Furthermore, we propose hardware interconnection and versatile intelligent software between these two devices. In this study, we first provide a state-of-the-art survey on MHDs and tablet computers, and their interconnections. Secondly we provide a comparative UI survey on two state-of-the-art MHDs with a proposal of a novel UI for the MHDs using Jakob Nielsen-s Ten Usability Heuristics Evaluation.
Keywords: Computational intelligence, hardcopy device, tablet computer, user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25212 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773