Search results for: J. K Adedeji
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Search results for: J. K Adedeji

7 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
6 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Authors: Abegunde Linda, Adedeji Oluwatola, Tope-Ajayi Opeyemi

Abstract:

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance; it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physicochemical variations in soil properties and other land attributes over space using a Geographic Information System (GIS) framework. Physicochemical parameters of importance selected include slope, landuse, physical and chemical properties of the soil, and climatic variables. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification, using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Keywords: AHP, GIS, MCE, Suitability, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
5 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

Authors: Abegunde Linda, Adedeji Oluwatola

Abstract:

It has become an increasing evident that large development influences the climate. There are concerns that rising temperature over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received little attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on surface temperature knowing that the built-up environment absorb and store solar energy, resulting into the Urban Heat Island (UHI) effect. The Landsat imagery was used to examine the landuse change for a period of 42 years (1972-2014). Land Surface Temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased to a large extent while the area covered by vegetation reduced during the study period. The spatial and temporal trends of surface temperature are related to the gradual change in urban landuse/landcover and the settlement area has the highest emission. This research provides useful insight into the temporal behavior of the Ibadan city.

Keywords: Landuse, LST, Remote sensing, UHI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
4 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment

Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji

Abstract:

Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.

Keywords: Food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
3 Influence of Seasons on Honeybee Wooden Hives Attack by Termites in Port Harcourt, Nigeria

Authors: A. A. Aiyeloja, G.A. Adedeji, S. L. Larinde

Abstract:

Termites have been observed as major pre-colonisation and post-colonisation pest insect of honeybees’ wooden hives in Nigeria. However, pest situation studies in modern beekeeping have been largely directed towards those pests that affect honeybees rather than the biological structure (wood) which houses the honeybees and the influence of seasons on the pests’ activities against the hives. This study, therefore, investigated the influence of seasons on the intensity of hives attacks by termites for 2 years in University of Port Harcourt, Rivers State using visual inspection. The Experimental Apiary was established with 15 Kenyan’s top bar hives made of Triplochiton scleroxylon wood that were strategically placed and observed within the Department of Forestry and Wildlife Management arboretum. The colonies hives consistently showed comparatively lower termite’s infestation levels in the dry season and, consequently, also lower attacks on the colonized hives. The result indicated raining season as a distinct period for more destructive activities of termites on the hives and strongly associated with dryness of the hives. Since previous study and observations have linked colonization with dry season coupled with minimal attacked on colonized hives; the non-colonised hives should be removed from the field at the onset of raining season and returned two weeks prior to dry season to reduce hives degradation by pests.

Keywords: Attack, hives degradation, Nigeria, seasons, termites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824
2 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
1 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Chek, diabetes, neural network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616