Search results for: Hydrogen ignition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 320

Search results for: Hydrogen ignition

140 Mechanical Design and Theoretical Analysis of a Skip-Cycle Mechanism for an Internal Combustion Engine

Authors: Ismail Gerzeli, Cemal Baykara, Osman Akin Kutlar

Abstract:

Skip cycle is a working strategy for spark ignition engines, which allows changing the effective stroke of an engine through skipping some of the four stroke cycles. This study proposes a new mechanism to achieve the desired skip-cycle strategy for internal combustion engines. The air and fuel leakage, which occurs through the gas exchange, negatively affects the efficiency of the engine at high speeds and loads. An absolute sealing is assured by direct use of poppet valves, which are kept in fully closed position during the skipped mode. All the components of the mechanism were designed according to the real dimensions of the Anadolu Motor's gasoline engine and modeled in 3D by means of CAD software. As the mechanism operates in two modes, two dynamically equivalent models are established to obtain the force and strength analysis for critical components.

Keywords: Dynamic Model, Mechanical Design, Skip Cycle System (SCS), Valve Disabling Mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
139 Numerical Simulation of Flow and Combustionin an Axisymmetric Internal Combustion Engine

Authors: Nureddin Dinler, Nuri Yucel

Abstract:

Improving the performance of internal combustion engines is one of the major concerns of researchers. Experimental studies are more expensive than computational studies. Also using computational techniques allows one to obtain all the required data for the cylinder, some of which could not be measured. In this study, an axisymmetric homogeneous charged spark ignition engine was modeled. Fluid motion and combustion process were investigated numerically. Turbulent flow conditions were considered. Standard k- ε turbulence model for fluid flow and eddy break-up model for turbulent combustion were utilized. The effects of valve angle on the fluid flow and combustion are analyzed for constant air/fuel and compression ratios. It is found that, velocities and strength of tumble increases in-cylinder flow and due to increase in turbulence strength, the flame propagation is faster for small valve angles.

Keywords: CFD simulation, eddy break-up model, k-εturbulence model, reciprocating engine flow and combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
138 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load

Authors: Amin Lotfi Eghlim, Mehran pourgholi

Abstract:

Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.

Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
137 Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation

Authors: Maged A. Mossallam

Abstract:

The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.

Keywords: Concentrated Solar Energy, Orbital Control, Power Generation, Solar Thermal Engine, Space Vehicles Propulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
136 Recycling of Tungsten Alloy Swarf

Authors: A. A. Alhazza

Abstract:

The recycling process of Tungsten alloy (Swarf) by oxidation reduction technique have been investigated. The reduced powder was pressed under a pressure 20Kg/cm2 and sintered at 1150°C in dry hydrogen atmosphere. The particle size of the recycled alloy powder was 1-3 μm and the shape was regular at a reduction temperature 800°C. The chemical composition of the recycled alloy is the same as the primary Swarf.

Keywords: Recycling, Swarf, Oxidation, Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
135 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
134 Thermal Securing of Electrical Contacts inside Oil Power Transformers

Authors: Ioan Rusu

Abstract:

In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.

Keywords: Power transformer, oil insulatation, electric contacts, gases, gas relay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
133 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe

Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin

Abstract:

An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1m and thus, the pipe was lengthened 1m (based on the centreline length of the segment). Ignition was affected at one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum overpressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed, of 63ms-1, was observed in a gas explosion with bent pipe; greater by a factor of ~3 as compared with straight pipe (23ms-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate, which increases the flame speed.

Keywords: Bending, gas explosion, bending, flame acceleration, overpressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
132 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.

Keywords: Forest wildfires, fuel volume estimation, 3D modeling, UAV, surveillance, firefighting, ignition detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
131 Combustion, Emission and Performance Characteristics of a Light Duty Diesel Engine Fuelled with Methanol Diesel Blends

Authors: Mishra Chinmaya, Pal Anuj, Tomar Vishvendra Singh, Kumar Naveen

Abstract:

Combustion, emission and performance characterization of a single cylinder diesel engine using methanol diesel blends was carried out. The blends were 5% (v/v) methanol in diesel (MD05) and 10% (v/v) methanol in diesel (MD10). The problem of solubility of methanol and diesel was addressed by an agitator placed inside the fuel tank to prevent phase separation. The results indicated that total combustion duration was reduced by15.8% for MD05 and 31.27% for MD10compared to the baseline data. Ignition delay was increased with increasing methanol volume fraction in the test fuel. Total cyclic heat release was reduced by 1.5% for MD05 and 6.7% for MD10 as compared to diesel baseline. Emissions of carbon monoxide, hydrocarbons along with smoke were reduced and that of nitrogen oxides were increased with rising methanol contents in the test fuel. Full load brake thermal efficiency was marginally reduced with increased methanol composition in the blend.

Keywords: Combustion, diesel engine, emission, methanol, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193
130 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
129 The Effect of Multiple Environmental Conditions on Acacia Senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdoelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence, it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven-day-old seedlings were assigned to the treatments in split-plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sandy soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C% and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Sahara, Sudan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406
128 Analysis of Complexes Pairing Performat Radical and Water

Authors: Sanaz Gharehzadeh Shirazi, Subira Gharehzadeh Shirazi, Fariba Jafari

Abstract:

The present article comprises a theoretical study of structures Performat radical (HCO3) with H2O molecule. We make use of ab initio quantum chemical methods. Unrestricted Hartee-Fock (UHF) with the basis set6-311+g(2df,2p) and density functional theory (B3LYP) with the basis set 6-311+g(2df,2p) and also we done atoms in molecules (AIM) theory for them. We have found four stable geometries the PerformatRadical(HCO3) with H2O.

Keywords: Hydrogen binding, Performat Radical, Water, Gaussian, Atoms in molecules (AIM) theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
127 Experimental Investigations on the Influence of Properties of Jatropha Biodiesel on Performance, Combustion, and Emission Characteristics of a DI-CI Engine

Authors: P. V. Rao

Abstract:

The aim of the present research work is to investigate the influence of Jatropha biodiesel properties on various characteristics of a direct injection compression ignition engine. The experiments were performed at different engine operating regimes with the injection timing prescribed by the engine manufacturer for diesel fuel. The engine characteristics with Jatropha biodiesel were compared against those obtained using diesel fuel. From the results, it is observed that the biodiesel performance and emissions are lower than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids and the advanced injection caused by the higher bulk modulus (or density) of Jatropha biodiesel Furthermore, the possibility for reduction of NOx emissions without expensive engine modifications (hardware) was investigated. Keeping this in mind, the Jatropha biodiesel was preheated. The experimental results show that the retarded injection timing is necessary when using Jatropha biodiesel in order to reduce NOx emission without worsening other engine characteristics. Results also indicate improved performance with the application of preheated biodiesel. The only penalty for using preheated biodiesel is the increase of smoke (soot).

Keywords: chemical properties, combustion, exhaust emissions, Jatropha biodiesel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
126 Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material

Authors: Malek Ali

Abstract:

Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites.

Keywords: PVA/Chitosan, Composites, PVA/CS/HNTs, HNTs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
125 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: Gas pipelines, incident radiation, numerical simulation, safety distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
124 Effect of Cooled EGR in Combustion Characteristics of a Direct Injection CI Engine Fuelled with Biodiesel Blend

Authors: Sankar Chandrasekar, Rana Niranchan V.S., Joseph Sidharth Leon

Abstract:

As the demand and prices of various petroleum products have been on the rise in recent years, there is a growing need for alternative fuels. Biodiesel, which consists of alkyl monoesters of fatty acids from vegetable oils and animal fats, is considered as an alternative to petroleum diesel. Biodiesel has comparable performance with that of diesel and has lower brake specific fuel consumption than diesel with significant reduction in emissions of CO, hydrocarbons (HC) and smoke with however, a slight increase in NOx emissions. This paper analyzes the effect of cooled exhaust gas recirculation in the combustion characteristics of a direct injection compression ignition engine using biodiesel blended fuel as opposed to the conventional system. The combustion parameters such as cylinder pressure, heat release rate, delay period and peak pressure were analyzed at various loads. The maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend the maximum rate of pressure rise was found to be higher for diesel at higher engine loads.

Keywords: Cylinder pressure, delay period, EGR, heat release.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
123 Role of Oxidative DNA Damage in Pathogenesis of Diabetic Neuropathy

Authors: Ireneusz Majsterek, Anna Merecz, Agnieszka Sliwinska, Marcin Kosmalski, Jacek Kasznicki, Jozef Drzewoski

Abstract:

Oxidative stress is considered to be the cause for onset and the progression of type 2 diabetes mellitus (T2DM) and complications including neuropathy. It is a deleterious process that can be an important mediator of damage to cell structures: protein, lipids and DNA. Data suggest that in patients with diabetes and diabetic neuropathy DNA repair is impaired, which prevents effective removal of lesions. Objective: The aim of our study was to evaluate the association of the hOGG1 (326 Ser/Cys) and XRCC1 (194 Arg/Trp, 399 Arg/Gln) gene polymorphisms whose protein is involved in the BER pathway with DNA repair efficiency in patients with diabetes type 2 and diabetic neuropathy compared to the healthy subjects. Genotypes were determined by PCR-RFLP analysis in 385 subjects, including 117 with type 2 diabetes, 56 with diabetic neuropathy and 212 with normal glucose metabolism. The polymorphisms studied include codon 326 of hOGG1 and 194, 399 of XRCC1 in the base excision repair (BER) genes. Comet assay was carried out using peripheral blood lymphocytes from the patients and controls. This test enabled the evaluation of DNA damage in cells exposed to hydrogen peroxide alone and in the combination with the endonuclease III (Nth). The results of the analysis of polymorphism were statistically examination by calculating the odds ratio (OR) and their 95% confidence intervals (95% CI) using the ¤ç2-tests. Our data indicate that patients with diabetes mellitus type 2 (including those with neuropathy) had higher frequencies of the XRCC1 399Arg/Gln polymorphism in homozygote (GG) (OR: 1.85 [95% CI: 1.07-3.22], P=0.3) and also increased frequency of 399Gln (G) allele (OR: 1.38 [95% CI: 1.03-1.83], P=0.3). No relation to other polymorphisms with increased risk of diabetes or diabetic neuropathy. In T2DM patients complicated by neuropathy, there was less efficient repair of oxidative DNA damage induced by hydrogen peroxide in both the presence and absence of the Nth enzyme. The results of our study suggest that the XRCC1 399 Arg/Gln polymorphism is a significant risk factor of T2DM in Polish population. Obtained data suggest a decreased efficiency of DNA repair in cells from patients with diabetes and neuropathy may be associated with oxidative stress. Additionally, patients with neuropathy are characterized by even greater sensitivity to oxidative damage than patients with diabetes, which suggests participation of free radicals in the pathogenesis of neuropathy.

Keywords: Diabetic neuropathy, oxidative stress, gene polymorphisms, oxidative DNA damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
122 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
121 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine

Authors: Abbas Alli Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni

Abstract:

An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive in neat diesel and diesel-biodiesel blends. In the first phase of the experiments, stability of neat diesel and diesel-biodiesel fuel blends with the addition of cerium oxide nanoparticles is analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability. In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamometer and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nanoparticles can be used as additive in diesel and diesel-biodiesel blends to improve complete combustion of the fuel significantly.

Keywords: Diesel engine, cerium oxide, diesel-biodiesel blends, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4759
120 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10% 

Keywords: Biomass, combustion, electrodynamic control, gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
119 Influence of Various Factors on Stability of CoSPc in LPG Sweetening Process

Authors: Ali Samadi Afshar, Hamed Harrafi, S.M.Javad Gharib Zahedi

Abstract:

IFP Group Technology “Sulfrex process" was used in Iran-s South Pars Gas Complex Refineries for removing sulfur compounds such as mercaptans, carbonyl sulfide and hydrogen sulfide, which uses sulfonated cobalt phthalocyanine dispersed in alkaline solution as catalyst. In this technology, catalyst and alkaline solution were used circularly. However the stability of catalyst due to effect of some parameters would reduce with the running of the unit and therefore sweetening efficiency would be decreased. Hence, the aim of this research is study the factors effecting on the stability of catalyst.

Keywords: sulfonated cobalt phthalocyanine, mercaptans, stability, catalyst, sulfur.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
118 Investigation of Gas Phase Composition During Carbon Nanotube Production

Authors: S. Yaglikci, B. Salgara, F. Soysal, B. Cicek

Abstract:

Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy.

Keywords: Carbon nanotubes, chemical vapor deposition, GC/MS, species profile

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
117 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine

Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir

Abstract:

An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.

Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
116 Temperature Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat vs. Open Flame

Authors: Caighley Logan, Suzzanne McColl

Abstract:

The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FTIR), and X-Ray Fluorescence (XRF), the data were collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (2.5 m x 2.4 m) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p =< 0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.

Keywords: Forensic anthropology, thermal alterations, porcine bone, FTIR, XRF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97
115 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: Dehydrogenation and hydrogenation, Reaction coupling, Design and control, Process integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4694
114 CFD Simulation of Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL Technology

Authors: Sh. Shahhosseini, S. Alinia, M. Irani

Abstract:

In this paper 2D Simulation of catalytic Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL technology has been performed utilizing computational fluid dynamics (CFD). Synthesis gas (a mixture of carbon monoxide and hydrogen) has been used as feedstock. The reactor was modeled and the model equations were solved employing finite volume method. The model was validated against the experimental data reported in literature. The comparison showed a good agreement between simulation results and the experimental data. In addition, the model was applied to predict the concentration contours of the reactants and products along the length of reactor.

Keywords: GTL, Fischer–Tropsch synthesis, Fixed Bed Reactor, CFD simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
113 Photo-Fenton Treatment of 1,3-dichloro-2- Propanol Aqueous Solutions Using UV Radiation and H2O2 – A Kinetic Study

Authors: Maria D. Nikolaki, Katerina N. Zerva, Constantine. J. Philippopoulos

Abstract:

The photochemical and photo-Fenton oxidation of 1,3-dichloro-2-propanol was performed in a batch reactor, at room temperature, using UV radiation, H2O2 as oxidant, and Fenton-s reagent. The effect of the oxidative agent-s initial concentration was investigated as well as the effect of the initial concentration of Fe(II) by following the target compound degradation, the total organic carbon removal and the chloride ion production. Also, from the kinetic analysis conducted and proposed reaction scheme it was deduced that the addition of Fe(II) significantly increases the production and the further oxidation of the chlorinated intermediates.

Keywords: 1, 3-dichloro-2-propanol, hydrogen peroxide, photo- Fenton, UV .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
112 Investigating Different Options for Reheating the First Converter Inlet Stream of Sulfur Recovery Units (SRUs)

Authors: H. Ganji, H. R. Mahdipoor, J. Ahmadpanah, H. Naderi

Abstract:

The modified Claus process is the major technology for the recovery of elemental sulfur from hydrogen sulfide. The chemical reactions that can occur in the reaction furnace are numerous and many byproducts such as carbon disulfide and carbon carbonyl sulfide are produced. These compounds can often contribute from 20 to 50% of the pollutants and therefore, should be hydrolyzed in the catalytic converter. The inlet temperature of the first catalytic reactor should be maintained over than 250 °C, to hydrolyze COS and CS2. In this paper, the various configurations for the first converter reheating of sulfur recovery unit are investigated. As a result, the performance of each method is presented for a typical clause unit. The results show that the hot gas method seems to be better than the other methods.

Keywords: Sulfur recovery unit, reaction converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
111 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine

Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi

Abstract:

One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.

Keywords: Combustion, Kernel growth, optically accessible engine, spark-ignition engine, spark plug orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694