Search results for: Humpback%20whale%20flipper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Humpback%20whale%20flipper

3 A Meta-Model for Tubercle Design of Wing Planforms Inspired by Humpback Whale Flippers

Authors: A. Taheri

Abstract:

Inspired by topology of humpback whale flippers, a meta-model is designed for wing planform design. The net is trained based on experimental data using cascade-forward artificial neural network (ANN) to investigate effects of the amplitude and wavelength of sinusoidal leading edge configurations on the wing performance. Afterwards, the trained ANN is coupled with a genetic algorithm method towards an optimum design strategy. Finally, flow physics of the problem for an optimized rectangular planform and also a real flipper geometry planform is simulated using Lam-Bremhorst low Reynolds number turbulence model with damping wall-functions resolving to the wall. Lift and drag coefficients and also details of flow are presented along with comparisons to available experimental data. Results show that the proposed strategy can be adopted with success as a fast-estimation tool for performance prediction of wing planforms with wavy leading edge at preliminary design phase.  

Keywords: Humpback whale flipper, cascade-forward ANN, GA, CFD, Bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3379
2 The Role of Immunogenic Adhesin Vibrio alginolyticus 49 k Da to Molecule Expression of Major Histocompatibility Complex on Receptors of Humpback Grouper Cromileptes altivelis

Authors: Uun Yanuhar

Abstract:

The purpose of research was to know the role of immunogenic protein of 49 kDa from V.alginolyticus which capable to initiate molecule expression of MHC Class II in receptor of Cromileptes altivelis. The method used was in vivo experimental research through testing of immunogenic protein 49 kDa from V.alginolyticus at Cromileptes altivelis (size of 250 - 300 grams) using 3 times booster by injecting an immunogenic protein in a intramuscular manner. Response of expressed MHC molecule was shown using immunocytochemistry method and SEM. Results indicated that adhesin V.alginolyticus 49 kDa which have immunogenic character could trigger expression of MHC class II on receptor of grouper and has been proven by staining using immunocytochemistry and SEM with labeling using antibody anti MHC (anti mouse). This visible expression based on binding between epitopes antigen and antibody anti MHC in the receptor. Using immunocytochemistry, intracellular response of MHC to in vivo induction of immunogenic adhesin from V.alginolyticus was shown.

Keywords: C.altivelis, immunogenic, MHC, V.alginolyticus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
1 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils

Authors: J. Joy, T. H. New, I. H. Ibrahim

Abstract:

A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.

Keywords: Computational Fluid Dynamics, Flow separation control, Hydrofoils, Leading-edge protuberances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961