Search results for: Homotopy Perturbation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8096

Search results for: Homotopy Perturbation method

8006 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3316
8005 New Delay-dependent Stability Conditions for Neutral Systems with Nonlinear Perturbations

Authors: Lianglin Xiong, Xiuyong Ding, Shouming Zhong

Abstract:

In this paper, the problem of asymptotical stability of neutral systems with nonlinear perturbations is investigated. Based on a class of novel augment Lyapunov functionals which contain freeweighting matrices, some new delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs) by using new inequality analysis technique. Numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.

Keywords: Asymptotical stability, neutral system, nonlinear perturbation, delay-dependent, linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
8004 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

Authors: J.S.C. Prentice

Abstract:

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
8003 Seat Assignment Problem Optimization

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper the optimality of the solution of an existing real word assignment problem known as the seat assignment problem using Seat Assignment Method (SAM) is discussed. SAM is the newly driven method from three existing methods, Hungarian Method, Northwest Corner Method and Least Cost Method in a special way that produces the easiness & fairness among all methods that solve the seat assignment problem.

Keywords: Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM), A Real Word Assignment Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3385
8002 Design of a Reduced Order Robust Convex Controller for Flight Control System

Authors: S. Swain, P. S. Khuntia

Abstract:

In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.

Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
8001 A New Method to Solve a Non Linear Differential System

Authors: Seifedine Kadry

Abstract:

In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.

Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
8000 Validation Testing for Temporal Neural Networks for RBF Recognition

Authors: Khaled E. A. Negm

Abstract:

A neuron can emit spikes in an irregular time basis and by averaging over a certain time window one would ignore a lot of information. It is known that in the context of fast information processing there is no sufficient time to sample an average firing rate of the spiking neurons. The present work shows that the spiking neurons are capable of computing the radial basis functions by storing the relevant information in the neurons' delays. One of the fundamental findings of the this research also is that when using overlapping receptive fields to encode the data patterns it increases the network-s clustering capacity. The clustering algorithm that is discussed here is interesting from computer science and neuroscience point of view as well as from a perspective.

Keywords: Temporal Neurons, RBF Recognition, Perturbation, On Line Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
7999 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper studies a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. From an existing robust stabilization result, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: Multi-agent System, Robust Stabilization, Transfer Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
7998 An Efficient Method for Solving Multipoint Equation Boundary Value Problems

Authors: Ampon Dhamacharoen, Kanittha Chompuvised

Abstract:

In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.

Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
7997 The Differential Transform Method for Advection-Diffusion Problems

Authors: M. F. Patricio, P. M. Rosa

Abstract:

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Keywords: Method of Lines, Differential Transform Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
7996 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
7995 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
7994 New Stabilization for Switched Neutral Systems with Perturbations

Authors: Lianglin Xiong, Shouming Zhong, Mao Ye

Abstract:

This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.

Keywords: Switched neutral system, piecewise Lyapunov functional, nonlinear perturbation, Lyapunov-Metzler linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
7993 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton

Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna

Abstract:

A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.

Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
7992 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
7991 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: Asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
7990 Temperature-dependent Structural Perturbation of Tuna Myoglobin

Authors: Yoshihiro Ochiai

Abstract:

To unveil the mechanism of fast autooxidation of fish myoglobins, the effect of temperature on the structural change of tuna myoglobin was investigated. Purified myoglobin was subjected to preincubation at 5, 20, 50 and 40oC. Overall helical structural decay through thermal treatment up to 95oC was monitored by circular dichroism spectrometry, while the structural changes around the heme pocket was measured by ultraviolet/visible absorption spectrophotometry. As a result, no essential structural change of myoglobin was observed under 30oC, roughly equivalent to their body temperature, but the structure was clearly damaged at 40oC. The Soret band absorption hardly differed irrespective of preincubation temperature, suggesting that the structure around the heme pocket was not perturbed even after thermal treatment.

Keywords: denaturation, myoglobin, stability, tuna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
7989 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake

Authors: Wenlong Liu, Yucheng Liu

Abstract:

This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.

Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
7988 Some Results on Preconditioned Modified Accelerated Overrelaxation Method

Authors: Guangbin Wang, Deyu Sun, Fuping Tan

Abstract:

In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.

Keywords: preconditioned, MAOR method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
7987 An Active Set Method in Image Inpainting

Authors: Marrick Neri, Esmeraldo Ronnie Rey Zara

Abstract:

In this paper, we apply a semismooth active set method to image inpainting. The method exploits primal and dual features of a proposed regularized total variation model, following after the technique presented in [4]. Numerical results show that the method is fast and efficient in inpainting sufficiently thin domains.

Keywords: Active set method, image inpainting, total variation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
7986 Surface Plasmon Polariton Excitation by a Phase Shift Grating

Authors: T. Nakada, Y. Nakagawa, M. Haraguchi, T. Okamotoi, M. Flockert, T. Isu, G. Shinomiya

Abstract:

We focus on the excitation and propagation properties of surface plasmon polariton (SPP). We have developed a SPP excitation device in combination with a grating structures fabricated by using the scanning probe lithography. Perturbation approach was used to investigate the coupling properties of SPP with a spatial harmonic wave supported by a metallic grating. A phase shift grating SPP coupler has been fabricated and the optical property was evaluated by the Fraunhofer diffraction formula. We have been experimentally confirmed the induced stop band by diffraction measurement. We have also observed the wavenumber shift of the resonance condition of SPP owing to effect of a phase shift.

Keywords: Surface Plasmon Polariton, phase shift grating, scanning probe lithography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
7985 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
7984 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: Dynamical diffraction, hologram, object image, X-ray holography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
7983 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: Convergence, iteration, line search, running time, steepest descent, unconstrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
7982 Calculation of Heating Load for an Apartment Complex with Unit Building Method

Authors: Ju-Seok Kim, Sun-Ae Moon, Tae-Gu Lee, Seung-Jae Moon, Jae-Heon Lee

Abstract:

As a simple to method estimate the plant heating energy capacity of an apartment complex, a new load calculation method has been proposed. The method which can be called as unit building method, predicts the heating load of the entire complex instead of summing up that of each apartment belonging to complex. Comparison of the unit heating load for various floor sizes between the present method and conventional approach shows a close agreement with dynamic load calculation code. Some additional calculations are performed to demonstrate it-s application examples.

Keywords: Unit Building Method, Unit Heating Load, TFMLoad.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3377
7981 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

Authors: Oleksandr Poliakov, Yevgen Pashkov, Marina Kolesova, Olena Chepenyuk, Mykhaylo Kalinin, Vadym Kramar

Abstract:

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Keywords: Iterative method, Laguerre's method, Newton's method, polynomial equation, system of equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
7980 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
7979 Modeling and Stability Analysis of Delayed Game Network

Authors: Zixin Liu, Jian Yu, Daoyun Xu

Abstract:

This paper aims to establish a delayed dynamical relationship between payoffs of players in a zero-sum game. By introducing Markovian chain and time delay in the network model, a delayed game network model with sector bounds and slope bounds restriction nonlinear function is first proposed. As a result, a direct dynamical relationship between payoffs of players in a zero-sum game can be illustrated through a delayed singular system. Combined with Finsler-s Lemma and Lyapunov stable theory, a sufficient condition guaranteeing the unique existence and stability of zero-sum game-s Nash equilibrium is derived. One numerical example is presented to illustrate the validity of the main result.

Keywords: Game networks, zero-sum game, delayed singular system, nonlinear perturbation, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
7978 A New Preconditioned AOR Method for Z-matrices

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems Ax = b, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.

Keywords: Z-matrix, AOR-type iterative method, precondition, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
7977 A Family of Improved Secant-Like Method with Super-Linear Convergence

Authors: Liang Chen

Abstract:

A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.

Keywords: Nonlinear equations, Secant method, Convergence order, Secant-like method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001