Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 129

Search results for: Histogram

9 Labeling Method in Steganography

Authors: H. Motameni, M. Norouzi, M. Jahandar, A. Hatami

Abstract:

In this paper a way of hiding text message (Steganography) in the gray image has been presented. In this method tried to find binary value of each character of text message and then in the next stage, tried to find dark places of gray image (black) by converting the original image to binary image for labeling each object of image by considering on 8 connectivity. Then these images have been converted to RGB image in order to find dark places. Because in this way each sequence of gray color turns into RGB color and dark level of grey image is found by this way if the Gary image is very light the histogram must be changed manually to find just dark places. In the final stage each 8 pixels of dark places has been considered as a byte and binary value of each character has been put in low bit of each byte that was created manually by dark places pixels for increasing security of the main way of steganography (LSB).

Keywords: Steganography, labeling, Neighborhood, threshold, binary image, low bit, RGB image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
8 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy

Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh

Abstract:

In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.

Keywords: Segmentation, conditional entropy, multi-level thresholding, two dimensional image histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
7 The Possibility Distribution for the Controlled Bloodstream Concentrations of Any Physiologically Active Substance

Authors: Arkady Bolotin

Abstract:

In many ways, biomedical analysis is analogous to possibilistic reasoning. In spite of that, there are hardly any applications of possibility theory in biology or medicine. The aim of this work is to demonstrate the use of possibility theory in an epidemiological study. In the paper, we build the possibility distribution for the controlled bloodstream concentrations of any physiologically active substance through few approximate considerations. This possibility distribution is tested later against the empirical histograms obtained from the panel study of the eight different physiologically active substances in 417 individuals.

Keywords: Possibility distributions, physiologically activesubstances, bloodstream concentrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
6 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Neurons, vectorization, Average filtering, Bicubic Interpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
5 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Cluster, Indexing, content-based, region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
4 Image Search by Features of Sorted Gray level Histogram Polynomial Curve

Authors: Muhammad Ali, Awais Adnan, Amir Hanif Dar

Abstract:

Image Searching was always a problem specially when these images are not properly managed or these are distributed over different locations. Currently different techniques are used for image search. On one end, more features of the image are captured and stored to get better results. Storing and management of such features is itself a time consuming job. While on the other extreme if fewer features are stored the accuracy rate is not satisfactory. Same image stored with different visual properties can further reduce the rate of accuracy. In this paper we present a new concept of using polynomials of sorted histogram of the image. This approach need less overhead and can cope with the difference in visual features of image.

Keywords: grayscale, Sorted Histogram, Polynomial Curves, feature pointsof images, visual properties of image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
3 Analysis of Sonogram Images of Thyroid Gland Based on Wavelet Transform

Authors: M. Bastanfard, S. Jafari, B. Jalaeian

Abstract:

Sonogram images of normal and lymphocyte thyroid tissues have considerable overlap which makes it difficult to interpret and distinguish. Classification from sonogram images of thyroid gland is tackled in semiautomatic way. While making manual diagnosis from images, some relevant information need not to be recognized by human visual system. Quantitative image analysis could be helpful to manual diagnostic process so far done by physician. Two classes are considered: normal tissue and chronic lymphocyte thyroid (Hashimoto's Thyroid). Data structure is analyzed using K-nearest-neighbors classification. This paper is mentioned that unlike the wavelet sub bands' energy, histograms and Haralick features are not appropriate to distinguish between normal tissue and Hashimoto's thyroid.

Keywords: Thyroid, Wavelet, Sonogram, Haralick feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2 Scene Adaptive Shadow Detection Algorithm

Authors: Mohammed Ibrahim M, Anupama R.

Abstract:

Robustness is one of the primary performance criteria for an Intelligent Video Surveillance (IVS) system. One of the key factors in enhancing the robustness of dynamic video analysis is,providing accurate and reliable means for shadow detection. If left undetected, shadow pixels may result in incorrect object tracking and classification, as it tends to distort localization and measurement information. Most of the algorithms proposed in literature are computationally expensive; some to the extent of equalling computational requirement of motion detection. In this paper, the homogeneity property of shadows is explored in a novel way for shadow detection. An adaptive division image (which highlights homogeneity property of shadows) analysis followed by a relatively simpler projection histogram analysis for penumbra suppression is the key novelty in our approach.

Keywords: Homogeneity, penumbra, projection histogram, shadow correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
1 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications

Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz

Abstract:

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Image Processing, real-time recognition, weeddetection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743