Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3
Search results for: Evrim Taşkıran
3 ZMP Based Reference Generation for Biped Walking Robots
Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven
Abstract:
Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16292 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23651 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.Keywords: Politics, personality traits, LIWC, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162