Search results for: Elaheh Vaezpour
2 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12411 Delivery of Positively Charged Proteins Using Hyaluronic Acid Microgels
Authors: Elaheh Jooybar, Mohammad J. Abdekhodaie, Marcel Karperien, Pieter J. Dijkstra
Abstract:
In this study, hyaluronic acid (HA) microgels were developed for the goal of protein delivery. First, a hyaluronic acid-tyramine conjugate (HA-TA) was synthesized with a degree of substitution of 13 TA moieties per 100 disaccharide units. Then, HA-TA microdroplets were produced using a water in oil emulsion method and crosslinked in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). Loading capacity and the release kinetics of lysozyme and BSA, as model proteins, were investigated. It was shown that lysozyme, a cationic protein, can be incorporated efficiently in the HA microgels, while the loading efficiency for BSA, as a negatively charged protein, is low. The release profile of lysozyme showed a sustained release over a period of one month. The results demonstrated that the HA-TA microgels are a good carrier for spatial delivery of cationic proteins for biomedical applications.
Keywords: Microgel, inverse emulsion, protein delivery, hyaluronic acid, crosslinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825