Search results for: Coreless PCB step down transformer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1142

Search results for: Coreless PCB step down transformer

1112 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: Distribution system, distribution transformer, power cable, technical losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
1111 Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering

Authors: S. S. Bhandari, N. Chakpitak, K. Meksamoot, T. Chandarasupsang

Abstract:

Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.

Keywords: CommonKADS, Knowledge Engineering, LifeCycle Management, Power Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
1110 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method

Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or

Abstract:

This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
1109 Computer-Aided Teaching of Transformers for Undergraduates

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

In the era of technological advancement, use of computer technology has become inevitable. Hence it has become the need of the hour to integrate software methods in engineering curriculum as a part to boost pedagogy techniques. Simulations software is a great help to graduates of disciplines such as electrical engineering. Since electrical engineering deals with high voltages and heavy instruments, extra care must be taken while operating with them. The viable solution would be to have appropriate control. The appropriate control could be well designed if engineers have knowledge of kind of waveforms associated with the system. Though these waveforms can be plotted manually, but it consumes a lot of time. Hence aid of simulation helps to understand steady state of system and resulting in better performance. In this paper computer, aided teaching of transformer is carried out using MATLAB/Simulink. The test carried out on a transformer includes open circuit test and short circuit respectively. The respective parameters of transformer are then calculated using the values obtained from open circuit and short circuit test respectively using Simulink.

Keywords: Computer aided teaching, transformer, open circuit test, short circuit test, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
1108 A New Method Presentation for Fault Location in Power Transformers

Authors: Hossein Mohammadpour, Rahman Dashti

Abstract:

Power transformers are among the most important and expensive equipments in the electric power systems. Consequently the transformer protection is an essential part of the system protection. This paper presents a new method for locating transformer winding faults such as turn-to-turn, turn-to-core, turn-totransformer body, turn-to-earth, and high voltage winding to low voltage winding. In this study the current and voltage signals of input and output terminals of the transformer are measured, which the Fourier transform of measured signals and harmonic analysis determine the fault's location.

Keywords: turn-to-turn faults, short circuit, Fourier transform, harmonic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
1107 Power Transformer Noise, Noise Tests, and Example Test Results

Authors: E. Doğan, B. Kekezoğlu

Abstract:

Voltage level must be raised in order to deliver the produced energy to the consumption zones with less loss and less cost. Power transformers used to raise or lower voltage are important parts of the energy transmission system. Power transformers used in switchgear and power generation plants stay in human's intensive habitat zones as a result of expanding cities. Accordingly, noise levels produced by power transformers have begun more and more important and they have established itself as one of the research field. In this research, the noise cause on transformers has been investigated, it's causes has been examined and noise measurement techniques have been introduced. Examples of transformer noise test results are submitted and precautions to be taken were discussed for the purpose of decreasing of the noise which will occurred by transformers.

Keywords: Power transformer, noise measurement, core noise, load noise, fan-pump noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5613
1106 Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis

Authors: Ambuj Kumar, Sunil Kumar Singh, Shrikant Singh

Abstract:

Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented for sub- frequency ranges for HV as well as LV winding. The main motive of work is to investigate high voltage short circuit response. The theoretical concept about SFRA responses is validated with expert system software results.

Keywords: Frequency deviation, OCT & SCT, SFRA, Transformer winding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868
1105 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: Finite element method, flux density, transformer, voltage gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
1104 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
1103 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
1102 Thermal Analysis of Toroidal Transformers Using Finite Element Method

Authors: Adrian T.

Abstract:

In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Temperature distribution, thermal analysis, toroidal transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3506
1101 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
1100 The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

Authors: M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, J. M. Prousalidis

Abstract:

This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.

Keywords: Balanced and unbalanced faults, industrial design, phase shift, power quality, power systems, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10143
1099 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique

Authors: R. Sarathi, G. Koperundevi

Abstract:

Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.

Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3785
1098 Effect of Uneven Surface on Magnetic Properties of Fe-Based Amorphous Transformer

Authors: Yeong-Hwa Chang, Chang-Hung Hsu, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan, Chun-Yao Lee; Chia-Shiang Yao, Yan-Lou He

Abstract:

This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise. 

Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1097 Effect of Uneven Surface on Magnetic Properties of Fe-based Amorphous Power Transformer

Authors: Chang-Hung Hsu, Yeong-Hwa Chang, Chun-Yao Lee, Chia-Shiang Yao, Yan-Lou He, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan

Abstract:

This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm ± 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.

Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
1096 Transformer Diagnosis Based on Coupled Circuits Method Modelling

Authors: Labar Hocine, Rekik Badri, Bounaya Kamel, Kelaiaia Mounia Samira

Abstract:

Diagnostic goal of transformers in service is to detect the winding or the core in fault. Transformers are valuable equipment which makes a major contribution to the supply security of a power system. Consequently, it is of great importance to minimize the frequency and duration of unwanted outages of power transformers. So, Frequency Response Analysis (FRA) is found to be a useful tool for reliable detection of incipient mechanical fault in a transformer, by finding winding or core defects. The authors propose as first part of this article, the coupled circuits method, because, it gives most possible exhaustive modelling of transformers. And as second part of this work, the application of FRA in low frequency in order to improve and simplify the response reading. This study can be useful as a base data for the other transformers of the same categories intended for distribution grid.

Keywords: Diagnostic, Coupled Circuit Method, FRA, Transformer Faults

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1095 High-Voltage Resonant Converter with Extreme Load Variation: Design Criteria and Applications

Authors: Jose A. Pomilio, Olavo Bet, Mateus P. Vieira

Abstract:

The power converter that feeds high-frequency, highvoltage transformers must be carefully designed due to parasitic components, mainly the secondary winding capacitance and the leakage inductance, that introduces resonances in relatively lowfrequency range, next to the switching frequency. This paper considers applications in which the load (resistive) has an unpredictable behavior, changing from open to short-circuit condition faster than the output voltage control loop could react. In this context, to avoid overvoltage and over current situations, that could damage the converter, the transformer or the load, it is necessary to find an operation point that assure the desired output voltage in spite of the load condition. This can done adjusting the frequency response of the transformer adding an external inductance, together with selecting the switching frequency to get stable output voltage independently of the load.

Keywords: High-voltage transformer, Resonant converter, Softcommutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
1094 Application of Fuzzy Logic in Fault Diagnosis in Transformers using Dissolved Gas based on Different Standards

Authors: Rahmatollah Hooshmand, Mahdi Banejad

Abstract:

One of the problems in fault diagnosis of transformer based on dissolved gas, is lack of matching the result of fault diagnosis of different standards with the real world. In this paper, the result of the different standards is analyzed using fuzzy and the result is compared with the empirical test. The comparison between the suggested method and existing methods indicate the capability of the suggested method in on-line fault diagnosis of the transformers. In addition, in some cases the existing standards are not able to diagnose the fault. In theses cases, the presented method has the potential of diagnosing the fault. The information of three transformers is used to the show the capability of the suggested method in diagnosing the fault. The results validate the capability of the presented method in fault diagnosis of the transformer.

Keywords: Fault Diagnosis of Transformer, Dissolved Gas, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
1093 Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device

Authors: K. N. Dinesh Babu, G. R. Manjunatha, R. Ramaprabha, V. Rajini, M. V. Gopalan

Abstract:

In this paper, monitoring and control of tap changer mechanism of a transformer implementation in an Intelligent Electronic Device (IED) is discussed. It has been a custom for decades to provide a separate panel for on load tap changer control for monitoring the tap position. However, this facility cannot either record or transfer the information to remote control centers. As there is a technology shift towards the smart grid protection and control standards, the need for implementing remote control and monitoring has necessitated the implementation of this feature in numerical relays. This paper deals with the programming, settings and logic implementation which is applicable to both IEC 61850 compatible and non-compatible IEDs thereby eliminating the need for separate tap changer control equipment. The monitoring mechanism has been implemented in a 28MVA, 110 /6.9kV transformer with 16 tap position with GE make T60 IED at Ultratech cement limited Gulbarga, Karnataka and is in successful service.

Keywords: Transformer protection, tap changer control, tap position monitoring, on load tap changer, intelligent electronic device (IED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3964
1092 Differential Protection for Power Transformer Using Wavelet Transform and PNN

Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry

Abstract:

A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.

Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
1091 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
1090 Mitigation of Sag in Real Time

Authors: Vijay Gajanan Neve, Pallavi V. Pullawar, G. M. Dhole

Abstract:

Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.

Keywords: Booster Transformer, Fuzzy logic, Static Var Compensator, Voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
1089 Wavelet based ANN Approach for Transformer Protection

Authors: Okan Özgönenel

Abstract:

This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.

Keywords: Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1088 Optimization of a New Three-Phase High Voltage Power Supply for Industrial Microwaves Generators with N Magnetrons by Phase (Treated Case N=1)

Authors: M. Bassoui, M. Ferfra, M. Chraygane, M. Ould Ahmedou, N. Elghazal, A. Belhaiba

Abstract:

Currently, the High voltage power supply for microwave generators with one magnetron uses a single-phase transformer with magnetic shunt. To contribute in the development of technological innovation in industry of manufacturing of power supplies of magnetrons for microwaves, ovens for domestic or industrial use, this original work treats the optimization of a new three-phase high voltage power supply for industrial microwaves generators with N magnetrons by phase (Treated case N=1), from its modeling with Matlab-Simulink. The design of this power supply uses three π quadruple models equivalents of new three-phase transformer with magnetic shunt of each phase. Every one supplies at its output a voltage doubler cell composed of a capacitor and a diode that in its output supplies only one magnetron.  In this work we will define a strategy that aims to reduce the volume of the transformer and the weight and cost of the entire system of the high voltage power supply, while respecting the conditions recommended by the manufacturer, concerning the current flowing in each magnetron: (Imax <1.2 A, IAv ≈ 300 mA).

 

Keywords: Optimization, Three-phase transformer, Modeling, power supply, magnetrons, Matlab Simulink, High Voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
1087 Replacement of Power Transformers basis on Diagnostic Results and Load Forecasting

Authors: G. Gavrilovs, O. Borscevskis

Abstract:

This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, testing, diagnostic power transformers to establish its conditions, identify problems and provide potential remedies.

Keywords: Diagnostic results, load forecasting, power supplysystem, replacement of power transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1086 STEP-NC-Compliant Systems for the Manufacturing Environment

Authors: Yusri Yusof

Abstract:

The paper provides a literature review of the STEPNC compliant research around the world. The first part of this paper focuses on projects based on STEP compliance followed by research and development in this area based on machining operations. Review the literature relating to relevant STEP standards and application in the area of turning centers. This research will review the various research work, carried out from the evolution of STEP-NC of the CNC manufacturing activities. The paper concludes with discussion of the applications in this particular area.

Keywords: STEP-NC, CNC, Machining and Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
1085 Fifth Order Variable Step Block Backward Differentiation Formulae for Solving Stiff ODEs

Authors: S.A.M. Yatim, Z.B. Ibrahim, K.I. Othman, F. Ismail

Abstract:

The implicit block methods based on the backward differentiation formulae (BDF) for the solution of stiff initial value problems (IVPs) using variable step size is derived. We construct a variable step size block methods which will store all the coefficients of the method with a simplified strategy in controlling the step size with the intention of optimizing the performance in terms of precision and computation time. The strategy involves constant, halving or increasing the step size by 1.9 times the previous step size. Decision of changing the step size is determined by the local truncation error (LTE). Numerical results are provided to support the enhancement of method applied.

Keywords: Backward differentiation formulae, block backwarddifferentiation formulae, stiff ordinary differential equation, variablestep size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
1084 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method

Authors: S. Qaedi, S. Seyedtabaii

Abstract:

Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.

Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
1083 An Investigation of Short Circuit Analysis in Komag Sarawak Operations (KSO) Factory

Authors: M. H. Hairi, H. Zainuddin, M.H.N. Talib, A. Khamis, J. Y. Lichun

Abstract:

Short circuit currents plays a vital role in influencing the design and operation of equipment and power system and could not be avoided despite careful planning and design, good maintenance and thorough operation of the system. This paper discusses the short circuit analysis conducted in KSO briefly comprising of its significances, methods and results. A result sample of the analysis based on a single transformer is detailed in this paper. Furthermore, the results of the analysis and its significances were also discussed and commented.

Keywords: Short circuit currents, Transformer fault current

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350