Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 240

Search results for: Clusters

210 Mapping of Adrenal Gland Diseases Research in Middle East Countries: A Scientometric Analysis, 2007-2013

Authors: Zahra Emami, Mohammad Ebrahim Khamseh, Nahid Hashemi Madani, Iman Kermani

Abstract:

The aim of the study was to map scientific research on adrenal gland diseases in the Middle East countries through the Web of Science database using scientometric analysis. Data were analyzed with Excel software; and HistCite was used for mapping of the scientific texts. In this study, from a total of 268 retrieved records, 1125 authors from 328 institutions published their texts in 138 journals. Among 17 Middle East countries, Turkey ranked first with 164 documents (61.19%), Israel ranked second with 47 documents (15.53%) and Iran came in the third place with 26 documents. Most of the publications (185 documents, 69.2%) were articles. Among the universities of the Middle East, Istanbul University had the highest science production rate (9.7%). The Journal of Clinical Endocrinology & Metabolism had the highest TGCS (243 citations). In the scientific mapping, 7 clusters were formed based on TLCS (Total Local Citation Score) & TGCS (Total Global Citation Score). considering the study results, establishment of scientific connections and collaboration with other countries and use of publications on adrenal gland diseases from high ranking universities can help in the development of this field and promote the medical practice in this regard. Moreover, investigation of the formed clusters in relation to Congenital Hyperplasia and puberty related disorders can be research priorities for investigators.

Keywords: Scientific Research, Mapping, scientometric, adrenal gland diseases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
209 Creation of Greater Mekong Subregion Regional Competitiveness through Cluster Mapping

Authors: Danuvasin Charoen

Abstract:

This research investigates cluster development in the area called the Greater Mekong Subregion (GMS), which consists of Thailand, the People’s Republic of China (PRC), the Yunnan Province and Guangxi Zhuang Autonomous Region, Myanmar, the Lao People’s Democratic Republic (Lao PDR), Cambodia, and Vietnam. The study utilized Porter’s competitiveness theory and the cluster mapping approach to analyze the competitiveness of the region. The data collection consists of interviews, focus groups, and the analysis of secondary data. The findings identify some evidence of cluster development in the GMS; however, there is no clear indication of collaboration among the components in the clusters. GMS clusters tend to be stand-alone. The clusters in Vietnam, Lao PDR, Myanmar, and Cambodia tend to be labor intensive, whereas the clusters in Thailand and the PRC (Yunnan) have the potential to successfully develop into innovative clusters. The collaboration and integration among the clusters in the GMS area are promising, though it could take a long time. The most likely relationship between the GMS countries could be, for example, suppliers of the low-end, labor-intensive products will be located in the low income countries such as Myanmar, Lao PDR, and Cambodia, and these countries will be providing input materials for innovative clusters in the middle income countries such as Thailand and the PRC.

Keywords: Development, Cluster, Competitiveness, Greater Mekong Subregion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
208 Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh

Authors: H. Ali, M. F. Miah, M. N. Naser, K. M. A. Zinnah, M. J. Raihan

Abstract:

As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, Monopterus cuchia at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively.

Keywords: Population, Genetic Diversity, Bangladesh, RAPD, Monopterus cuchia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
207 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: mesh simplification, coarsening, mesh clustering, shape approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
206 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: correlation, K-Means Clustering, Hierarchical Clustering, CO2 emission, share of electricity generation, multivariate methods, targets, discriminant analyzed, EU member countries

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
205 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: Optimization, CAD, block layout problem, building-block layout design, search techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
204 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Hasan Arda Burhan, Eylem Koç

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: multi-criteria decision making, analytic network process, BOCR, multi-actor decision making, location selection, real life problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
203 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Data Mining, Knowledge Discovery, Fuzzy Logic, Decision Support System, data discovery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
202 The Role of Knowledge Management in Innovation: Spanish Evidence

Authors: Marïa Jesús Luengo-Valderrey, Mónica Moso-Díez

Abstract:

In the knowledge-based economy, innovation is considered essential in order to achieve survival and growth in organizations. On the other hand, knowledge management is currently understood as one of the keys to innovation process. Both factors are generally admitted as generators of competitive advantage in organizations. Specifically, activities on R&D&I and those that generate internal knowledge have a positive influence in innovation results. This paper examines this effect and if it is similar or not is what we aimed to quantify in this paper. We focus on the impact that proportion of knowledge workers, the R&D&I investment, the amounts destined for ICTs and training for innovation have on the variation of tangible and intangibles returns for the sector of high and medium technology in Spain. To do this, we have performed an empirical analysis on the results of questionnaires about innovation in enterprises in Spain, collected by the National Statistics Institute. First, using clusters methodology, the behavior of these enterprises regarding knowledge management is identified. Then, using SEM methodology, we performed, for each cluster, the study about cause-effect relationships among constructs defined through variables, setting its type and quantification. The cluster analysis results in four groups in which cluster number 1 and 3 presents the best performance in innovation with differentiating nuances among them, while clusters 2 and 4 obtained divergent results to a similar innovative effort. However, the results of SEM analysis for each cluster show that, in all cases, knowledge workers are those that affect innovation performance most, regardless of the level of investment, and that there is a strong correlation between knowledge workers and investment in knowledge generation. The main findings reached is that Spanish high and medium technology companies improve their innovation performance investing in internal knowledge generation measures, specially, in terms of R&D activities, and underinvest in external ones. This, and the strong correlation between knowledge workers and the set of activities that promote the knowledge generation, should be taken into account by managers of companies, when making decisions about their investments for innovation, since they are key for improving their opportunities in the global market.

Keywords: Knowledge Management, Innovation, high and medium technology sector, Spanish companies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
201 Dominating Set Algorithm and Trust Evaluation Scheme for Secured Cluster Formation and Data Transferring

Authors: S. Balaji, E. Golden Julie, Y. Harold Robinson, M. Rajaram

Abstract:

This paper describes the proficient way of choosing the cluster head based on dominating set algorithm in a wireless sensor network (WSN). The algorithm overcomes the energy deterioration problems by this selection process of cluster heads. Clustering algorithms such as LEACH, EEHC and HEED enhance scalability in WSNs. Dominating set algorithm keeps the first node alive longer than the other protocols previously used. As the dominating set of cluster heads are directly connected to each node, the energy of the network is saved by eliminating the intermediate nodes in WSN. Security and trust is pivotal in network messaging. Cluster head is secured with a unique key. The member can only connect with the cluster head if and only if they are secured too. The secured trust model provides security for data transmission in the dominated set network with the group key. The concept can be extended to add a mobile sink for each or for no of clusters to transmit data or messages between cluster heads and to base station. Data security id preferably high and data loss can be prevented. The simulation demonstrates the concept of choosing cluster heads by dominating set algorithm and trust evaluation using DSTE. The research done is rationalized.

Keywords: Wireless Sensor Networks, LEECH, EEHC, HEED, DSTE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
200 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand, and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: Water Quality, Cluster Analysis, river Hindon, multivariate statistical technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
199 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: Density Functional Theory, Smart Nanomaterials, Atomic Clusters, magic clusters, Jellium Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
198 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali

Abstract:

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several subnetworks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Keywords: Cluster, Routing Protocols, Wireless Sensor Networks, sub-network, WSN design requirements, ad hoc topology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
197 Analysis of Diverse Cluster Ensemble Techniques

Authors: N. Shanthi, S. Sarumathi, P. Ranjetha

Abstract:

Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.

Keywords: Diversity, CspA, Consensus Function, Cluster Ensemble, HGPA, MCLA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
196 Bowen Ratio in Western São Paulo State, Brazil

Authors: Elaine C. Barboza, Antonio J. Machado

Abstract:

This paper discusses micrometeorological aspects of the urban climate in three cities in Western São Paulo State: Presidente Prudente, Assis and Iepê. Particular attention is paid to the method used to estimate the components of the energy balance at the surface. Estimates of convective fluxes showed that the Bowen ratio was an indicator of the local climate and that its magnitude varied between 0.3 and 0.7. Maximum values for the Bowen ratio occurred earlier in Iepê (11:00 am) than in Presidente Prudente (4:00 pm). The results indicate that the Bowen ratio is modulated by the radiation balance at the surface and by different clusters of vegetation.

Keywords: Urban Climate, Surface Energy Balance, Bowen ratio, medium-sized cities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3656
195 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.

Keywords: Algorithm, Clustering, Method, Survey, hierarchical

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
194 A Simple User Administration View of Computing Clusters

Authors: Valeria M. Bastos, Myrian A. Costa, Matheus Ambrozio, Nelson F. F. Ebecken

Abstract:

In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented.

Keywords: Big Data, computing clusters, administration view, user view

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
193 Personalization of Web Search Using Web Page Clustering Technique

Authors: Pradeep M. Patil, Amol Bapuso Rajmane, Prakash J. Kulkarni

Abstract:

The Information Retrieval community is facing the problem of effective representation of Web search results. When we organize web search results into clusters it becomes easy to the users to quickly browse through search results. The traditional search engines organize search results into clusters for ambiguous queries, representing each cluster for each meaning of the query. The clusters are obtained according to the topical similarity of the retrieved search results, but it is possible for results to be totally dissimilar and still correspond to the same meaning of the query. People search is also one of the most common tasks on the Web nowadays, but when a particular person’s name is queried the search engines return web pages which are related to different persons who have the same queried name. By placing the burden on the user of disambiguating and collecting pages relevant to a particular person, in this paper, we have developed an approach that clusters web pages based on the association of the web pages to the different people and clusters that are based on generic entity search.

Keywords: Information Retrieval, Clustering, Entity resolution, graph based disambiguation, web people search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
192 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: Adhesion, Aluminum, Carbon Fiber, alumina fiber, thixomixing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
191 Customer Segmentation Model in E-commerce Using Clustering Techniques and LRFM Model: The Case of Online Stores in Morocco

Authors: Rachid Ait Daoud, Belaid Bouikhalene, Abdellah Amine, Rachid Lbibb

Abstract:

Given the increase in the number of e-commerce sites, the number of competitors has become very important. This means that companies have to take appropriate decisions in order to meet the expectations of their customers and satisfy their needs. In this paper, we present a case study of applying LRFM (length, recency, frequency and monetary) model and clustering techniques in the sector of electronic commerce with a view to evaluating customers’ values of the Moroccan e-commerce websites and then developing effective marketing strategies. To achieve these objectives, we adopt LRFM model by applying a two-stage clustering method. In the first stage, the self-organizing maps method is used to determine the best number of clusters and the initial centroid. In the second stage, kmeans method is applied to segment 730 customers into nine clusters according to their L, R, F and M values. The results show that the cluster 6 is the most important cluster because the average values of L, R, F and M are higher than the overall average value. In addition, this study has considered another variable that describes the mode of payment used by customers to improve and strengthen clusters’ analysis. The clusters’ analysis demonstrates that the payment method is one of the key indicators of a new index which allows to assess the level of customers’ confidence in the company's Website.

Keywords: Cluster Analysis, Customer Value, loyalty, K-means algorithm, LRFM model, Self-Organizing Maps method (SOM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4947
190 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

In this paper, we calculate the two-photon ionization (TPI) cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is assumed to be close to the surface plasmon (SP) energy of cluster in dielectric media. Due to this choice, the pump wave excites collective oscillations of electrons-SP and the probe wave causes ionization of the cluster. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The advantage of Ag clusters as compared to the other noble metals is that the SP resonance in silver cluster is much sharper because of peculiarities of its dielectric function. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows taking into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: resonance enhancement, silver clusters, two-photon ionization, surface plasmon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
189 Speciation of Iron (III) Oxide Nanoparticles and Other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Authors: Lavrent Khachatryan, Michael P. Herring, Barry Dellinger

Abstract:

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1--MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron (III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by gfactors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77 K after accumulation over a multitude of experiments. Additionally, a high valence Fe (IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe (IV) --- O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Keywords: dendrimer, cryogenic trapping, EPFRs, soot, Fe2O3 doped silica

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
188 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method

Authors: P. Ashok, G. M. Kadhar Nawaz

Abstract:

Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.

Keywords: Clustering, Entropy, outlier, Rough K-Means, validity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
187 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set

Authors: M. Santhalakshmi, P Suganthi

Abstract:

Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.

Keywords: Clustering, Wireless Sensor Network, data aggregation, connected dominant set

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
186 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: Dengue, Sri Lanka, ALOS/AVNIR-2, Space-time clustering analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
185 A Study on the Relation among Primary Care Professionals Serving the Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome

Authors: Chau-Kuang Chen, Jr., Juanita Buford, Colette Davis, Raisha Allen, John Hughes, James Tyus, Dexter Samuels

Abstract:

During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the United States. The elevated death and disease rates among former slaves were attributable to lack of quality healthcare. To address the paucity of healthcare services, Meharry Medical College, an institution with the mission of educating minority professionals and serving the underserved population, was established in 1876. Purpose: The social ecological framework and partial least squares (PLS) path modeling were used to quantify the impact of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Thus, the study results could demonstrate the accomplishment of the College’s mission of training primary care professionals to serve in underserved areas. Methods: Various statistical methods were used to analyze alumni data from 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates in the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t-test was performed to detect the significant mean differences of respective clustering and criterion variables. Chi-square test was used to test if the proportions of primary care and non-primary care specialists are consistent with those of medical and dental graduates practicing in the designated community clusters. Finally, the PLS path model was constructed to explore the construct validity of analytic model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Results: Approximately 83% (3,192/3,864) of Meharry Medical College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. Independent t-test confirmed the content validity of the cluster analysis model. Also, the PLS path modeling demonstrated that alumni served as primary care professionals in communities with significantly lower socioeconomic status and higher adverse health outcome (p < .001). The PLS path modeling exhibited the meaningful interrelation between primary care professionals practicing communities and surrounding environments (socioeconomic statues and adverse health outcome), which yielded model reliability, validity, and applicability. Conclusion: This study applied social ecological theory and analytic modeling approaches to assess the attainment of Meharry Medical College’s mission of training primary care professionals to serve in underserved areas, particularly in communities with low socioeconomic status and high rates of adverse health outcomes. In summary, the majority of medical and dental graduates from Meharry Medical College provided primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcome, which demonstrated that Meharry Medical College has fulfilled its mission. The high reliability, validity, and applicability of this model imply that it could be replicated for comparable universities and colleges elsewhere.

Keywords: Primary Care, disadvantaged community, PLS path modeling, K-means Cluster Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
184 Game Theory Based Diligent Energy Utilization Algorithm for Routing in Wireless Sensor Network

Authors: X. Mercilin Raajini, R. Raja Kumar, P. Indumathi, V. Praveen

Abstract:

Many cluster based routing protocols have been proposed in the field of wireless sensor networks, in which a group of nodes are formed as clusters. A cluster head is selected from one among those nodes based on residual energy, coverage area, number of hops and that cluster-head will perform data gathering from various sensor nodes and forwards aggregated data to the base station or to a relay node (another cluster-head), which will forward the packet along with its own data packet to the base station. Here a Game Theory based Diligent Energy Utilization Algorithm (GTDEA) for routing is proposed. In GTDEA, the cluster head selection is done with the help of game theory, a decision making process, that selects a cluster-head based on three parameters such as residual energy (RE), Received Signal Strength Index (RSSI) and Packet Reception Rate (PRR). Finding a feasible path to the destination with minimum utilization of available energy improves the network lifetime and is achieved by the proposed approach. In GTDEA, the packets are forwarded to the base station using inter-cluster routing technique, which will further forward it to the base station. Simulation results reveal that GTDEA improves the network performance in terms of throughput, lifetime, and power consumption.

Keywords: Game theory, Sensor Network, energy utilization, cluster head, LEACH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
183 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data Mining, k-means, MCOKE, overlapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
182 Students’ Perception and Patterns of Listening Behavior in an Online Forum Discussion

Authors: K. L. Wong, I. N. Umar

Abstract:

Online forum is part of a Learning Management System (LMS) environment in which students share their opinions. This study attempts to investigate the perceptions of students towards online forum and their patterns of listening behavior during the forum interaction. The students’ perceptions were measured using a questionnaire, in which seven dimensions were used involving online experience, benefits of forum participation, cost of participation, perceived ease of use, usefulness, attitude, and intention. Meanwhile, their patterns of listening behaviors were obtained using the log file extracted from the LMS. A total of 25 postgraduate students undertaking a course were involved in this study, and their activities in the forum session were recorded by the LMS and used as a log file. The results from the questionnaire analysis indicated that the students perceived that the forum is easy to use, useful, and bring benefits to them. Also, they showed positive attitude towards online forum, and they have the intention to use it in future. Based on the log data, the participants were also divided into six clusters of listening behavior, in which they are different in terms of temporality, breadth, depth and speaking level. The findings were compared to previous clusters grouping and future recommendations are also discussed.

Keywords: e-Learning, Learning Management System, online forum, listening behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
181 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India

Authors: Jayshree Hazarika, Arup K. Sarma

Abstract:

The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and nonconventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that nonconventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.

Keywords: Climate Change, FCM analysis, homogeneous regions, conventional and nonconventional methods of clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849