Search results for: Boost%20Converter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 124

Search results for: Boost%20Converter

124 Experimental Study of Boost Converter Based PV Energy System

Authors: T. Abdelkrim, K. Ben seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa

Abstract:

This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC microcontroller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.

Keywords: Boost converter, Microcontroller, Photovoltaic power generation, Shading cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3947
123 Modeling, Analysis and Simulation of 4-Phase Boost Converter

Authors: Nagulapati Kiran, V. Rangavalli, B. Vanajakshi

Abstract:

This paper designs the four-phase Boost Converter which overcomes the problem of high input ripple current and output ripple voltage. Digital control is more convenient for such a topology on basis of synchronization, phase shift operation, etc. Simulation results are presented for open-loop and closed-loop for four phase boost converter. This control scheme is applicable for PFC rectifiers as well. Thus a comparative analysis based on the obtained results is performed.

Keywords: Boost Converter, Bode plot, PI Controller, Four phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3946
122 Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter

Authors: P. Ram Mohan, M. Vijaya Kumar, O. V. Raghava Reddy

Abstract:

This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.

Keywords: Boost Converter, Power Factor Correction, Electro Magnetic Interference, Diode Rectifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3380
121 Comparison of Zero Voltage Soft Switching and Hard Switching Boost Converter with Maximum Power Point Tracking

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).

Keywords: Boost converter, duty cycle, hard switching, MOSFET, maximum power point tracking, photovoltaic, soft switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
120 Mathematical Modelling of Single Phase Unity Power Factor Boost Converter

Authors: Sanjay L. Kurkute, Pradeep M. Patil, Kakasaheb C. Mohite

Abstract:

An optimal control strategy based on simple model, a single phase unity power factor boost converter is presented with an evaluation of first order differential equations. This paper presents an evaluation of single phase boost converter having power factor correction. The simple discrete model of boost converter is formed and optimal control is obtained, digital PI is adopted to adjust control error. The method of instantaneous current control is proposed in this paper for its good tracking performance of dynamic response. The simulation and experimental results verified our design.

Keywords: Single phase, boost converter, Power factor correction (PFC), Pulse Width Modulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3392
119 Design and Analysis of Two-Phase Boost DC-DC Converter

Authors: Taufik Taufik, Tadeus Gunawan, Dale Dolan, Makbul Anwari

Abstract:

Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results from hardware measurement of the boost converter demonstrates the benefits of using multiphase. Results from the hardware prototype of the 2-phase boost converter further show the potential extension of multiphase beyond its commonly used low voltage high current domains.

Keywords: Multiphase, boost converter, power electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4640
118 Application of Boost Converter for Ride-through Capability of Adjustable Speed Drives during Sag and Swell Conditions

Authors: S. S. Deswal, Ratna Dahiya, D. K. Jain

Abstract:

Process control and energy conservation are the two primary reasons for using an adjustable speed drive. However, voltage sags are the most important power quality problems facing many commercial and industrial customers. The development of boost converters has raised much excitement and speculation throughout the electric industry. Now utilities are looking to these devices for performance improvement and reliability in a variety of areas. Examples of these include sags, spikes, or transients in supply voltage as well as unbalanced voltages, poor electrical system grounding, and harmonics. In this paper, simulations results are presented for the verification of the proposed boost converter topology. Boost converter provides ride through capability during sag and swell. Further, input currents are near sinusoidal. This eliminates the need of braking resistor also.

Keywords: Adjustable speed drive, power quality, boost converter, ride through capabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
117 Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction

Authors: A. Inba Rexy, R. Seyezhai

Abstract:

Through the fast growing technologies, design of power factor correction (PFC) circuit is facing several challenges. In this paper, a two-phase interleaved boost converter with ripple steering technique is proposed. Among the various topologies, Interleaved Boost converter (IBC) is considered as superior due to enriched performance, lower ripple content, compact weight and size. A thorough investigation is presented here for the proposed topology. Simulation study for the IBC has been carried out using MATLAB/SIMULINK. Theoretical analysis and hardware prototype has been performed to validate the results.

Keywords: Interleaved Boost Converter (IBC), Power Factor Correction (PFC), Ripple Steering Technique, Ripple, and Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
116 Bifurcation Study and Parameter Analyses Boost Converter

Authors: S. Ben Said, K. Ben Saad, M. Benrejeb

Abstract:

This paper deals with bifurcation analyses in current programmed DC/DC Boost converter and exhibition of chaotic behavior. This phenomenon occurs due to variation of a set of the studied circuit parameters (input voltage and a reference current). Two different types of bifurcation paths have been observed as part as part of another bifurcation arising from variation of suitable chosen parameter.

Keywords: Bifurcation, Chaos, Boost converter, Current- programmed control, Initial parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
115 An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani

Abstract:

This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.

Keywords: Boost Convertors, Power Electronics, PID, Fuzzy logic, Open loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3802
114 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection

Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan

Abstract:

This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.

Keywords: Boost Converter, Current Sensing, Power-on protection, Step-up Converter, Soft-start.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
113 On Two Control Approaches for The Output Voltage Regulation of a Boost Converter

Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb

Abstract:

This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.

Keywords: Boost DC-DC converter, Sliding Mode Control (SMC), Fuzzy Sliding Mode Control (FSMC), Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
112 Bridgeless Boost Power Factor Correction Rectifier with Hold-Up Time Extension Circuit

Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Yuan-Jhen Siao

Abstract:

A bridgeless boost (BLB) power factor correction (PFC) rectifier with hold-up time extension circuit is proposed in this paper. A full bridge rectifier is widely used in the front end of the ac/dc converter. Since the shortcomings of the full bridge rectifier, the bridgeless rectifier is developed. A BLB rectifier topology is utilized with the hold-up time extension circuit. Unlike the traditional hold-up time extension circuit, the proposed extension scheme uses fewer active switches to achieve a longer hold-up time. Simulation results are presented to verify the converter performance.

Keywords: Bridgeless boost, boost converter, power factor correction, hold-up time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
111 Power Factor Correction Based on High Switching Frequency Resonant Power Converter

Authors: B. Sathyanandhi, P. M. Balasubramaniam

Abstract:

This paper presents Buck-Boost converter topology to maintain the input power factor by using the power factor stage control and regulation stage control. Suppose, if we are using the RL load the power factor will be reduced due to the presence of total harmonic distortion in the current wave. To improve the power factor the current waveform should follow the fundamental component of the voltage waveform. These can be achieved by using the high -frequency power converter. Based on the resonant circuit the converter is able to perform the function of Buck, Boost, and buck-boost converter. Here ,we have used Buck-Boost converter, because, the buck-boost converter has more advantages than the boost converter. Here the switching action of the power converter can  take place by using the external zero comparator PFC stage control. The power converter consisting of the resonant  circuit which is used to control the output voltage gain of the converter. The power converter is operated at a very high switching frequency in the range of 400KHz in order to overcome the switching losses of the power converter. Due to  presence of high switching frequency, the power factor will improve. Therefore, the total harmonics distortion present in the current waveform has also reduced. These results has generated in the form of simulation by using MATLAB/SIMULINK software.  Similar to the Buck and Boost converters, the operation of the Buck-Boost has best understood, in terms of the inductor's "reluctance" for allowing rapid change in current, which also reduces the Total Harmonic Distortion (THD) in the input current waveform, which can improve the input Power factor, based on the type of load used.

Keywords: Buck-boost converter, High switching frequency, Power factor correction, power factor correction stage Regulation stage, Total harmonic distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
110 Preliminary Survey on MATLAB Learning among Power Electronics Students in Technical Education: A Case Study

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani, Insaf Ali Siming

Abstract:

This paper discusses about the findings of preliminary survey on MATLAB software learning among power electronics students. One of the main focuses of power electronics course is on DC to DC boost convertors, because boost convertors are generally used in different industrial and non industrial applications. Population samples of this study were randomly selected final year bachelor of electronics and electrical engineering students from University Tun Hussein Onn Malaysia (UTHM).As per the results from the survey questioner analysis, almost eighty percent students are facing problem and difficulties in Dc to Dc boost convertors experimental understanding without using MATLAB simulink package. As per finding of this study it is clear that MATLAB play an effective and efficient function for better understanding of boost convertors experimental work among power electronics learners.

Keywords: MATLAB, Simulation, Power Electronics, Experimental Work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
109 Modified Buck Boost Circuit for Linear and Non-Linear Piezoelectric Energy Harvesting

Authors: I Made Darmayuda, Chai Tshun Chuan Kevin, Je Minkyu

Abstract:

Plenty researches have reported techniques to harvest energy from piezoelectric transducer. In the earlier years, the researches mainly report linear energy harvesting techniques whereby interface circuitry is designed to have input impedance that match with the impedance of the piezoelectric transducer. In recent years non-linear techniques become more popular. The non-linear technique employs voltage waveform manipulation to boost the available-for-extraction energy at the time of energy transfer.  The fact that non-linear energy extraction provides larger available-for-extraction energy doesn’t mean the linear energy extraction is completely obsolete. In some scenarios, such as where initial power is not available, linear energy extraction is still preferred. A modified Buck Boost circuit which is capable of harvesting piezoelectric energy using both linear and non-linear techniques is reported in this paper. Efficiency of at least 64% can be achieved using this circuit. For linear extraction, the modified Buck Boost circuit is controlled using a fix frequency and duty cycle clock. A voltage sensor and a pulse generator are added as the controller for the non-linear extraction technique. 

Keywords: Buck boost, energy harvester, linear energy harvester, non-linear energy harvester, piezoelectric, synchronized charge extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
108 Negative Slope Ramp Carrier Control for High Power Factor Boost Converters in CCM Operation

Authors: T. Tanitteerapan, E.Thanpo

Abstract:

This paper, a simple continuous conduction mode (CCM) pulse-width-modulated (PWM) controller for high power factor boost converters is introduced. The duty ratios were obtained by the comparison of a sensed signal from inductor current or switch current and a negative slope ramp carrier waveform in each switching period. Due to the proposed control requires only the inductor current or switch current sensor and the output voltage sensor, its circuit implementation was very simple. To verify the proposed control, the circuit experimentation of a 350 W boost converter with the proposed control was applied. From the results, the input current waveform was shaped to be closely sinusoidal, implying high power factor and low harmonics.

Keywords: High power factor converters, boost converters, low harmonic rectifiers, power factor correction, and current control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
107 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: Average current control, boost converter, electrical tuning, energy harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
106 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer

Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy

Abstract:

This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.

Keywords: Direct power transfer, boost converter, zero-voltage transition, zero-current transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
105 ZVZCT PWM Boost DC-DC Converter

Authors: İsmail Aksoy, Hacı Bodur, Nihan Altıntas

Abstract:

This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.

Keywords: Active snubber cell, boost converter, zero current switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
104 Design and Simulation of CCM Boost Converter for Power Factor Correction Using Variable Duty Cycle Control

Authors: M. Nirmala

Abstract:

Power quality in terms of power factor, THD and precisely regulated output voltage are the major key factors for efficient operation of power electronic converters. This paper presents an easy and effective active wave shaping control scheme for the pulsed input current drawn by the uncontrolled diode bridge rectifier thereby achieving power factor nearer to unity and also satisfying the THD specifications. It also regulates the output DC-bus voltage. CCM boost power factor correction with constant frequency operation features smaller inductor current ripple resulting in low RMS currents on inductor and switch thus leading to low electromagnetic interference. The objective of this work is to develop an active PFC control circuit using CCM boost converter implementing variable duty cycle control. The proposed scheme eliminates inductor current sensing requirements yet offering good performance and satisfactory results for maintaining the power quality. Simulation results have been presented which covers load changes also.

Keywords: CCM Boost converter, Power factor Correction, Total harmonic distortion, Variable Duty Cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7438
103 Structural Simulation of a 4H-Sic Based Optically Controlled Thyristor Using a GaAs Based Optically Triggered Power Transistor and Its Application to DC-DC Boost Converter

Authors: Srikanta Bose, S.K. Mazumder

Abstract:

In the present simulation work, an attempt is made to study the switching dynamics of an optically controlled 4HSiC thyristor power semiconductor device with the use of GaAs optically triggered power transistor. The half-cell thyristor has the forward breakdown of 200 V and reverse breakdown of more than 1000 V. The optically controlled thyristor has a rise time of 0.14 μs and fall time of 0.065 μs. The turn-on and turn-off delays are 0.1 μs and 0.06 μs, respectively. In addition, this optically controlled thyristor is used as a control switch for the DC-DC Boost converter. The pn-diode used for the converter has the forward drop of 2.8 V and reverse breakdown of around 400 V.

Keywords: 4H-SiC, Boost converter, Optical triggering, Power semiconductor device, thyristor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
102 A Novel Adaptive Voltage Control Strategy for Boost Converter via Inverse LQ Servo-Control

Authors: Sorawit Stapornchaisit, Sidshchadhaa Aumted, Hiroshi Takami

Abstract:

In this paper, we propose a novel adaptive voltage control strategy for boost converter via Inverse LQ Servo-Control. Our presented strategy is based on an analytical formula of Inverse Linear Quadratic (ILQ) design method, which is not necessary to solve Riccati’s equation directly. The optimal and adaptive controller of the voltage control system is designed. The stability and the robust control are analyzed. Whereas, we can get the analytical solution for the optimal and robust voltage control is achieved through the natural angular velocity within a single parameter and we can change the responses easily via the ILQ control theory. Our method provides effective results as the stable responses and the response times are not drifted even if the condition is changed widely.

Keywords: Boost converter, optimal voltage control, inverse LQ design method, type-1 servo-system, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
101 Chattering Phenomenon Supression of Buck Boost DC-DC Converter with Fuzzy Sliding Modes Control

Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb

Abstract:

This paper proposes a Fuzzy Sliding Mode Control (FSMC) as a control strategy for Buck-Boost DC-DC converter. The proposed fuzzy controller specifies changes in the control signal based on the knowledge of the surface and the surface change to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

Keywords: Buck Boost converter, Sliding Mode Control, Fuzzy Sliding Mode Control, robustness, chattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
100 Analysis of a PWM Boost Inverter for Solar Home Application

Authors: Rafia Akhter, Aminul Hoque

Abstract:

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Keywords: Boost Inverter, inverter, duty cycle, PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4563
99 Non-Isolated Direct AC-DC Converter Design with BCM-PFC Circuit

Authors: Y. Kobori, L. Xing, H. Gao, N.Onozawa, S. Wu, S. N. Mohyar, Z. Nosker, H. Kobayashi, N. Takai, K. Niitsu

Abstract:

This paper proposes two types of non-isolated direct AC-DC converters. First, it shows a buck-boost converter with an H-bridge, which requires few components (three switches, two diodes, one inductor and one capacitor) to convert AC input to DC output directly. This circuit can handle a wide range of output voltage. Second, a direct AC-DC buck converter is proposed for lower output voltage applications. This circuit is analyzed with output voltage of 12V. We describe circuit topologies, operation principles and simulation results for both circuits.

Keywords: AC-DC converter, Buck-boost converter, Buck converter, PFC, BCM PFC circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4731
98 Modeling and Simulation of Two-Phase Interleaved Boost Converter Using Open-Source Software Scilab/Xcos

Authors: Yin Yin Phyo, Tun Lin Naing

Abstract:

This paper investigated the simulation of two-phase interleaved boost converter (IBC) with free and open-source software Scilab/Xcos. By using interleaved method, it can reduce current stress on components, components size, input current ripple and output voltage ripple. The required mathematical model is obtained from the equivalent circuit of its different four modes of operation for simulation. The equivalent circuits are considered in continuous conduction mode (CCM). The average values of the system variables are derived from the state-space equation to find the equilibrium point. Scilab is now becoming more and more popular among students, engineers and scientists because it is open-source software and free of charge. It gives a great convenience because it has powerful computation and simulation function. The waveforms of output voltage, input current and inductors current are obtained by using Scilab/Xcos.

Keywords: Two-phase boost converter, continuous conduction mode, free and open-source, interleaved method, dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
97 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller

Authors: Thandar Aung, Tun Lin Naing

Abstract:

In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.

Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
96 Implementation the Average Input Current Mode Control of Two-Phase Interleaved Boost Converter Using Low-Cost Microcontroller

Authors: Yin Yin Phyo, Tun Lin Naing

Abstract:

In this paper, the average input current mode control is proposed for two-phase interleaved boost converter with two separate input inductors operating in continuous conduction mode (CCM). The required mathematical model is obtained from the equivalent circuits of its different four modes of operation. The small ripple approximation is derived to find the transfer functions from dynamic model using switching function. In average input current mode control, the inner current loop and outer voltage loop are designed with PI controller using bode analysis. Anti-windup structure is applied for PI controllers in control system. Moreover, the simulation work is carried out by MATLAB/Simulink. And, the hardware prototype is implemented by using low-cost microcontroller Arduino Nano. Finally, the laboratory prototype, available from the local market, is constructed to validate the mathematical model. The results show that the output voltage response is the faster rise time and settling time with acceptable overshoot.

Keywords: Average input current mode control, interleaved boost converter, low-cost microcontroller, PI controller, switching function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
95 Investigation of Chaotic Behavior in DC-DC Converters

Authors: Sajid Iqbal, Masood Ahmed, Suhail Aftab Qureshi

Abstract:

DC-DC converters are widely used in regulated switched mode power supplies and in DC motor drive applications. There are several sources of unwanted nonlinearity in practical power converters. In addition, their operation is characterized by switching that gives birth to a variety of nonlinear dynamics. DC-DC buck and boost converters controlled by pulse-width modulation (PWM) have been simulated. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonic oscillations, quasi-periodicity, bifurcations, and chaos have been observed. This paper is mainly motivated by potential contributions of chaos theory in the design, analysis and control of power converters, in particular and power electronics circuits, in general.

Keywords: Buck converter, boost converter, period- doubling, chaos, bifurcation, strange attractor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3604