Search results for: Bed Material Size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3567

Search results for: Bed Material Size

3507 Material Saving Strategies, Technologies and Effects on Return on Sales

Authors: Jasna Prester, Najla Podrug, Davor Filipović

Abstract:

Manufacturing companies invest a significant amount of sales into material resources for production. In our sample, 58% of sales is used for manufacturing inputs, while only 24% of sales is used for salaries. This means that if a company is looking to reduce costs, the greater potential is in reduction of material costs than downsizing. This research shows that manufacturing companies in Croatia did realize material savings in last three years. It is also shown by which technologies they achieved materials cost savings. Through literature research, we found research gap as to which technologies reduce material consumption. As methodology of research four regression analyses are used to prove our findings.

Keywords: Croatia, materials savings strategies, technologies, return on sales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
3506 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading

Authors: M. Amiri

Abstract:

In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.

Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
3505 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams

Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding

Abstract:

A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.

Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, nonlocal strain gradient theory, velocity gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
3504 Optimizing Materials Cost and Mechanical Properties of PVC Electrical Cable-s Insulation by Using Mixture Experimental Design Approach

Authors: Safwan Altarazi, Raghad Hemeimat, Mousa Wakileh, Ra'ad Qsous, Aya Khreisat

Abstract:

With the development of the Polyvinyl chloride (PVC) products in many applications, the challenge of investigating the raw material composition and reducing the cost have both become more and more important. Considerable research has been done investigating the effect of additives on the PVC products. Most of the PVC composites research investigates only the effect of single/few factors, at a time. This isolated consideration of the input factors does not take in consideration the interaction effect of the different factors. This paper implements a mixture experimental design approach to find out a cost-effective PVC composition for the production of electrical-insulation cables considering the ASTM Designation (D) 6096. The results analysis showed that a minimum cost can be achieved through using 20% virgin PVC, 18.75% recycled PVC, 43.75% CaCO3 with participle size 10 microns, 14% DOP plasticizer, and 3.5% CPW plasticizer. For maximum UTS the compound should consist of: 17.5% DOP, 62.5% virgin PVC, and 20.0% CaCO3 of particle size 5 microns. Finally, for the highest ductility the compound should be made of 35% virgin PVC, 20% CaCO3 of particle size 5 microns, and 45.0% DOP plasticizer.

Keywords: ASTM 6096, mixture experimental-design approach, PVC electrical cable insulation, recycled PVC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4660
3503 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining

Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail

Abstract:

Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.

Keywords: Composite material, ground improvement, mining legacy, resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
3502 Scheduling a Project to Minimize Costs of Material Requirements

Authors: Amir Abbas Najafi, Nima Zoraghi, Fatemeh Azimi

Abstract:

Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.

Keywords: Project scheduling, metaheuristic, material ordering, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
3501 Development of a Quantitative Material Wastage Management Plan for Effective Waste Reduction in the Building Construction Industry

Authors: Kwok Tak Kit

Abstract:

Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and greenhouse gas (GHG) emissions in the environment of different countries and cities. However, there is little research on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. This paper focuses on the potentialities and importance of material wastage management and reviews the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.

Keywords: Quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
3500 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
3499 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing. 

Keywords: Soft soil stabilisation, waste materials, fineness, and unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
3498 Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting

Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov

Abstract:

In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.

Keywords: Additive manufacturing, aluminium alloy, melting pools, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
3497 Reduce the Complexity of Material Requirement Planning on Excel by an Algorithm

Authors: Sumitra Nuanmeesri, Kanate Ploydanai

Abstract:

Many companies have excel, it is economy and well perform to use in material requirement planning (MRP) on excel. For several products, it, however, is complex problem to link the relationship between the tables of products because the relationship depends on bill of material (BOM). This paper presents algorithm to create MRP on excel, and links relationship between tables. The study reveals MRP that is created by the algorithm which is easier and faster than MRP that created by human. By this technique, MRP on excel might be good ways to improve a productivity of companies.

Keywords: Material requirement planning, Algorithm, Spreadsheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3223
3496 Preparation of ATO Conductive Particles with Narrow Size Distribution

Authors: Yueying Wu, Fengzhu Lv, Yihe Zhang, Zixian Xu

Abstract:

Antimosy-doped tin oxide (ATO) particles were prepared via chemical coprecipitation and reverse emulsion. The size and size distribution of ATO particles were obviously decreased via reverse microemulsion method. At the relatively high yield the ATO particles were nearly spherical in shape, meanwhile the crystalline structure and excellent conductivity were reserved, which could satisfy the requirement as composite fillers, such as dielectric filler of polyimide film.

Keywords: ATO particle, Conductivity, Distribution, Reverse emulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
3495 Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration

Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar

Abstract:

A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.

Keywords: Adsorption, electrically conducting adsorbent material, electrochemical regeneration, waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3161
3494 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: Cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
3493 Analysis of Rail Ends under Wheel Contact Loading

Authors: Nannan Zong, Manicka Dhanasekar

Abstract:

The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation material

Keywords: Rail end, material interface, wheel-rail contact, stress, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
3492 Preparation of Size Controlled Silver on Carbon from E-waste by Chemical and Electro-Kinetic Processes

Authors: Mahmoud A. Rabah

Abstract:

Preparation of size controlled nano-particles of silver catalyst on carbon substrate from e-waste has been investigated. Chemical route was developed by extraction of the metals available in nitric acid followed by treatment with hydrofluoric acid. Silver metal particles deposited with an average size 4-10 nm. A stabilizer concentration of 10- 40 g/l was used. The average size of the prepared silver decreased with increase of the anode current density. Size uniformity of the silver nano-particles was improved distinctly at higher current density no more than 20mA... Grain size increased with EK time whereby aggregation of particles was observed after 6 h of reaction.. The chemical method involves adsorption of silver nitrate on the carbon substrate. Adsorbed silver ions were directly reduced to metal particles using hydrazine hydrate. Another alternative method is by treatment with ammonia followed by heating the carbon loaded-silver hydroxide at 980°C. The product was characterized with the help of XRD, XRF, ICP, SEM and TEM techniques.

Keywords: e-waste, silver catalyst, metals recovery, electrokinetic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
3491 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: Crack size, Fatigue crack propagation, Magnesium alloys, Probability distribution, Specimen thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
3490 Does Material Choice Drive Sustainability of 3D Printing?

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
3489 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: Nanoparticle, nanotube, oximes, precursor, supercritical CO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
3488 Properties of SMA Mixtures Containing Waste Polyethylene Terephthalate

Authors: Taher Baghaee Moghaddam, Mohamed Rehan Karim

Abstract:

Utilization of waste material in asphalt pavement would be beneficial in order to find an alternative solution to increase service life of asphalt pavement and reduce environmental pollution as well. One of these waste materials is Polyethylene Terephthalate (PET) which is a type of polyester material and is produced in a large extent. This research program is investigating the effects of adding waste PET particles into the asphalt mixture with a maximum size of 2.36 mm. Different percentages of PET were added into the mixture during dry process. Gap-graded mixture (SMA 14) and PG 80-100 asphalt binder have been used for this study. To evaluate PET reinforced asphalt mixture different laboratory investigations have been conducted on specimens. Marshall Stability test was carried out. Besides, stiffness modulus test and indirect tensile fatigue test were conducted on specimens at optimum asphalt content. It was observed that in many cases PET reinforced SMA mixture had better mechanical properties in comparison with control mixture.

Keywords: Asphalt mixture, Environment, Mix properties, Polyethylene terephthalate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
3487 An Optimal Algorithm for HTML Page Building Process

Authors: Maryam Jasim Abdullah, Bassim. H. Graimed, Jalal. S. Hameed

Abstract:

Demand over web services is in growing with increases number of Web users. Web service is applied by Web application. Web application size is affected by its user-s requirements and interests. Differential in requirements and interests lead to growing of Web application size. The efficient way to save store spaces for more data and information is achieved by implementing algorithms to compress the contents of Web application documents. This paper introduces an algorithm to reduce Web application size based on reduction of the contents of HTML files. It removes unimportant contents regardless of the HTML file size. The removing is not ignored any character that is predicted in the HTML building process.

Keywords: HTML code, HTML tag, WEB applications, Document compression, DOM tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
3486 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast–Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic Waste Aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a Supplementary Cementitious Material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: Ceramic waste aggregate, Chloride diffusion, GGBS, Pore size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3485 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
3484 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: Interstitial free, miniaturized tensile specimen, plastic anisotropy, rapid alloy prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50
3483 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: Supersonic flow, viscous flow, finite volume, blunt body.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
3482 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model

Authors: S. Channgam, A. Sae-Tang, T. Termsaithong

Abstract:

In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.

Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
3481 Magnesium Borate Synthesis by Microwave Method Using MgCl2.6H2O and H3BO3

Authors: A. S. Kipcak, P. Gurses, K. Kunt, E. Moroydor Derun, S. Piskin

Abstract:

There are many kinds of metal borates found not only in nature but also synthesized in the laboratory such as magnesium borates. Due to its excellent properties, as remarkable ceramic materials, they have also application areas in anti-wear and friction reducing additives as well as electro-conductive treating agents. The synthesis of magnesium borate powders can be fulfilled simply with two different methods, hydrothermal and thermal synthesis. Microwave assisted method, also another way of producing magnesium borate, can be classified into thermal synthesis because of using the principles of solid state synthesis. It also contributes producing particles with small size and high purity in nano-size material synthesize. In this study the production of magnesium borates, are aimed using MgCl2.6H2O and H3BO3. The identification of both starting materials and products were made by the equipments of, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). After several synthesis steps magnesium borates were synthesized and characterized by XRD and FT-IR, as well.

Keywords: FT-IR, magnesium borates, microwave method, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
3480 Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers microhardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures thereby improving the integrity of the material.

Keywords: Austenite, Ferrite, Grain size, Hardness, Martensite, Microstructure and stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4357
3479 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting

Authors: A. Karimzad Ghavidel, M. Zadshakouyan

Abstract:

Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.

Keywords: Dimensional accuracy-PMMA-CNTs-laser cutting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
3478 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method

Authors: S. Phanyaem

Abstract:

This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.

Keywords: Effect size, confidence interval, Bootstrap Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107