Search results for: Balasaheb M. Patre
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Balasaheb M. Patre

2 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Authors: Suresh S. Salankar, Balasaheb M. Patre

Abstract:

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1 Performance Evaluation of an Amperometric Biosensor using a Simple Microcontroller based Data Acquisition System

Authors: V. G. Sangam, Balasaheb M. Patre

Abstract:

In this paper we have proposed a methodology to develop an amperometric biosensor for the analysis of glucose concentration using a simple microcontroller based data acquisition system. The work involves the development of Detachable Membrane Unit (enzyme based biomembrane) with immobilized glucose oxidase on the membrane and interfacing the same to the signal conditioning system. The current generated by the biosensor for different glucose concentrations was signal conditioned, then acquired and computed by a simple AT89C51-microcontroller. The optimum operating parameters for the better performance were found and reported. The detailed performance evaluation of the biosensor has been carried out. The proposed microcontroller based biosensor system has the sensitivity of 0.04V/g/dl, with a resolution of 50mg/dl. It has exhibited very good inter day stability observed up to 30 days. Comparing to the reference method such as HPLC, the accuracy of the proposed biosensor system is well within ± 1.5%. The system can be used for real time analysis of glucose concentration in the field such as, food and fermentation and clinical (In-Vitro) applications.

Keywords: Biosensor, DMU, Glucose oxidase andMicrocontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776