Search results for: Azura Bt. Che Soh
5 Total Lipid of Mutant Synechococcus sp. PCC 7002
Authors: Azlin S Azmi, Mus’ab Zainal, Sarina Sulaiman, Azura Amid, Zaki Zainudin
Abstract:
Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30oC and 1% NaNO3.
Keywords: Cyanobacteria, lipid, mutant, marine Synechococcus sp. PCC 7002, specific growth rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26694 Contrast Enhancement of Color Images with Color Morphing Approach
Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi
Abstract:
Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.
Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11053 Objective Assessment of Psoriasis Lesion Thickness for PASI Scoring using 3D Digital Imaging
Authors: M.H. Ahmad Fadzil, Hurriyatul Fitriyah, Esa Prakasa, Hermawan Nugroho, S.H. Hussein, Azura Mohd. Affandi
Abstract:
Psoriasis is a chronic inflammatory skin condition which affects 2-3% of population around the world. Psoriasis Area and Severity Index (PASI) is a gold standard to assess psoriasis severity as well as the treatment efficacy. Although a gold standard, PASI is rarely used because it is tedious and complex. In practice, PASI score is determined subjectively by dermatologists, therefore inter and intra variations of assessment are possible to happen even among expert dermatologists. This research develops an algorithm to assess psoriasis lesion for PASI scoring objectively. Focus of this research is thickness assessment as one of PASI four parameters beside area, erythema and scaliness. Psoriasis lesion thickness is measured by averaging the total elevation from lesion base to lesion surface. Thickness values of 122 3D images taken from 39 patients are grouped into 4 PASI thickness score using K-means clustering. Validation on lesion base construction is performed using twelve body curvature models and show good result with coefficient of determinant (R2) is equal to 1.Keywords: 3D digital imaging, base construction, PASI, psoriasis lesion thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24542 A Comparative Study of PV Models in Matlab/Simulink
Authors: Mohammad Seifi, Azura Bt. Che Soh, Noor Izzrib. Abd. Wahab, Mohd Khair B. Hassan
Abstract:
Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracyKeywords: Fill Factor (FF), Matlab/Simulink, Maximum PowerPoint (MPP), Maximum Power Point Tracker (MPPT), Photo Voltaic(PV), Solar cell, Standard Test Condition (STC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58061 Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion
Authors: M.H. Ahmad Fadzil, Esa Prakasa, Hurriyatul Fitriyah, Hermawan Nugroho, Azura Mohd Affandi, S.H. Hussein
Abstract:
Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.
Keywords: psoriasis, roughness algorithm, polynomial surfacefitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491