Search results for: A. K. Abdel-Fattah
2 Peak-to-Average Power Ratio Reduction in OFDM Systems using Huffman Coding
Authors: Ashraf A. Eltholth, Adel R. Mikhail, A. Elshirbini, Moawad I. Moawad, A. I. Abdelfattah
Abstract:
In this paper we proposed the use of Huffman coding to reduce the PAR of an OFDM system as a distortionless scrambling technique, and we utilize the amount saved in the total bit rate by the Huffman coding to send the encoding table for accurate decoding at the receiver without reducing the effective throughput. We found that the use of Huffman coding reduces the PAR by about 6 dB. Also we have investigated the effect of PAR reduction due to Huffman coding through testing the spectral spreading and the inband distortion due to HPA with different IBO values. We found a complete match of our expectation from the proposed solution with the obtained simulation results.Keywords: HPA, Huffman coding, OFDM, PAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25961 Approach for a Safety Element out of Context for an Actuator Circuit Control Module
Authors: H. Noun, C. Urban-Seelmann, M. Abdelfattah, G. Zeller, G. Rajesh, I. Mozgova, R. Lachmayer
Abstract:
Several modules in automotive are usually modified and adapted for various project-specific applications. Due to a standardized safety concept a high reusability is accessible. A safety element out of context (SEooC) according to ISO 26262 can be a suitable approach. Based on the same safety concept and analysis, common modules can reach high reusability. For developing according to a module out of context, an appropriate and detailed development approach is required. This paper shows how to deduce this development processes for platform modules. Therefore, the detailed approach of the SEooC is derived. The aim is to create a detailed workflow for all phases of the development and integration of any kind of system modules. As an application example, an automotive project for an actuator control module is considered.
Keywords: Functional Safety, Safety Element out of Context, System Engineering, Hardware Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379