**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**376

# Search results for: (2 1)-dimensional breaking soliton equation

##### 376 Some Exact Solutions of the (2+1)-Dimensional Breaking Soliton Equation using the Three-wave Method

**Authors:**
Mohammad Taghi Darvishi,
Mohammad Najafi

**Abstract:**

This paper considers the (2+1)-dimensional breaking soliton equation in its bilinear form. Some exact solutions to this equation are explicitly derived by the idea of three-wave solution method with the assistance of Maple. We can see that the new idea is very simple and straightforward.

**Keywords:**
Soliton solution,
computerized symbolic computation,
painleve analysis,
(2+1)-dimensional breaking soliton equation,
Hirota's bilinear form.

##### 375 New Exact Solutions for the (3+1)-Dimensional Breaking Soliton Equation

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this work, we obtain some analytic solutions for the (3+1)-dimensional breaking soliton after obtaining its Hirota-s bilinear form. Our calculations show that, three-wave method is very easy and straightforward to solve nonlinear partial differential equations.

**Keywords:**
(3+1)-dimensional breaking soliton equation,
Hirota'sbilinear form.

##### 374 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

**Keywords:**
Exact solution,
The (3+1)-dimensional breaking soliton equation,
( G G )-expansion method,
Riccati equation,
Modified Fexpansion method.

##### 373 Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations

**Authors:**
Magdy G. Asaad

**Abstract:**

**Keywords:**
Bilinear operator,
G-BKP equation,
Integrable nonlinear PDEs,
Jimbo-Miwa equation,
Ma-Fan equation,
N-soliton solutions,
Pfaffian solutions.

##### 372 Multiple Soliton Solutions of (2+1)-dimensional Potential Kadomtsev-Petviashvili Equation

**Authors:**
Mohammad Najafi,
Ali Jamshidi

**Abstract:**

We employ the idea of Hirota-s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of (2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.

**Keywords:**
Hirota bilinear method,
potential Kadomtsev-Petviashvili equation,
multiple soliton solutions,
multiple singular soliton solutions.

##### 371 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation

**Authors:**
Somayeh Arbabi Mohammad-Abadi,
Maliheh Najafi

**Abstract:**

In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.

**Keywords:**
Three-wave method,
(3+1)-dimensional Soliton equation,
Hirota's bilinear form.

##### 370 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

**Authors:**
S. Arun Prakash,
V. Malathi,
M. S. Mani Rajan

**Abstract:**

**Keywords:**
Optical soliton,
soliton interaction,
soliton switching,
WDM.

##### 369 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

**Authors:**
Sarun Phibanchon,
Michael A. Allen

**Abstract:**

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr┬¿odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

**Keywords:**
Soliton,
instability,
variational method,
spectral method.

##### 368 Characteristic Study on Conventional and Soliton Based Transmission System

**Authors:**
Bhupeshwaran Mani,
S. Radha,
A. Jawahar,
A. Sivasubramanian

**Abstract:**

**Keywords:**
Soliton,
dispersion length,
Soliton period,
Return-tozero
(RZ),
Q-factor.

##### 367 The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation

**Authors:**
Chuanjian Wang,
Changfu Liu,
Zhengde Dai

**Abstract:**

In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.

**Keywords:**
EKdV equation,
Breather,
Soliton,
Bilinear form,
The
direct AnsAz method.

##### 366 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation

**Authors:**
Sarun Phibanchon

**Abstract:**

The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.

**Keywords:**
soliton,
iterative method,
spectral method,
plasma

##### 365 Cutting and Breaking Events in Telugu

**Authors:**
Vasanta Duggirala,
Y. Viswanatha Naidu

**Abstract:**

**Keywords:**
Cluster analysis,
Cutting and breaking events,
Polysemy,
Semantic extension,
Telugu.

##### 364 Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

**Authors:**
A. Jawahar

**Abstract:**

**Keywords:**
Soliton interaction,
Initial relative spacing,
phase,
Perturbation theory and telecommunication system.

##### 363 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

**Authors:**
A. Abdikian

**Abstract:**

**Keywords:**
Bifurcation theory,
magnetized electron-positron plasma,
phase portrait,
the Zakharov-Kuznetsov equation.

##### 362 Wave Vortex Parameters as an Indicator of Breaking Intensity

**Authors:**
B. Robertson,
K. Hall

**Abstract:**

The study of the geometric shape of the plunging wave enclosed vortices as a possible indicator for the breaking intensity of ocean waves has been ongoing for almost 50 years with limited success. This paper investigates the validity of using the vortex ratio and vortex angle as methods of predicting breaking intensity. Previously published works on vortex parameters, based on regular wave flume results or solitary wave theory, present contradictory results and conclusions. Through the first complete analysis of field collected irregular wave breaking vortex parameters it is illustrated that the vortex ratio and vortex angle cannot be accurately predicted using standard breaking wave characteristics and hence are not suggested as a possible indicator for breaking intensity.

**Keywords:**
Breaking Wave Measurement,
Wave Vortex Parameters,
Analytical Techniques,
Ocean Remote Sensing.

##### 361 Soliton Interaction in Birefringent Fibers with Third-Order Dispersion

**Authors:**
Dowluru Ravi Kumar,
Bhima Prabhakara Rao

**Abstract:**

Propagation of solitons in single-mode birefringent fibers is considered under the presence of third-order dispersion (TOD). The behavior of two neighboring solitons and their interaction is investigated under the presence of third-order dispersion with different group velocity dispersion (GVD) parameters. It is found that third-order dispersion makes the resultant soliton to deviate from its ideal position and increases the interaction between adjacent soliton pulses. It is also observed that this deviation due to third-order dispersion is considerably small when the optical pulse propagates at wavelengths relatively far from the zerodispersion. Modified coupled nonlinear Schrödinger-s equations (CNLSE) representing the propagation of optical pulse in single mode fiber with TOD are solved using split-step Fourier algorithm. The results presented in this paper reveal that the third-order dispersion can substantially increase the interaction between the solitons, but large group velocity dispersion reduces the interaction between neighboring solitons.

**Keywords:**
Birefringence,
Group velocity dispersion,
Polarization mode dispersion,
Soliton interaction,
Third order dispersion.

##### 360 Breaking of Charge Independence of Nucleon-Nucleon Interaction Using Phase Shift Calculations

**Authors:**
B. Rezaei,
N. Amiri,
N. Azizi

**Abstract:**

Using calculated phase- shift values, for pp, nn, and np elastic scattering in the energy range 1MeV to 350MeV, the charge independence breaking of nucleon-nucleon interaction is investigated. We have used Darboux transformation to calculate phase-shift for the first three values of

**Keywords:**
Phase-shift,
charge independence breaking,
Darboux transformation.

##### 359 New Application of EHTA for the Generalized(2+1)-Dimensional Nonlinear Evolution Equations

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this paper, the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (shortly CBS) equations are investigated. We employ the Hirota-s bilinear method to obtain the bilinear form of CBS equations. Then by the idea of extended homoclinic test approach (shortly EHTA), some exact soliton solutions including breather type solutions are presented.

**Keywords:**
EHTA,
(2+1)-dimensional CBS equations,
(2+1)-dimensional breaking solution equation,
Hirota's bilinear form.

##### 358 Stability of Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

**Keywords:**
Fractional calculus,
fractional differential equation,
Lane-Emden equation,
Riemann-Liouville fractional operators,
Volterra integral equation.

##### 357 Existence of Iterative Cauchy Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

**Keywords:**
Fractional calculus,
fractional differential equation,
Cauchy equation,
Riemann-Liouville fractional operators,
Volterra
integral equation,
non-expansive mapping,
iterative differential equation.

##### 356 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

**Authors:**
Ahmet Tekcan,
Betül Gezer,
Osman Bizim

**Abstract:**

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

**Keywords:**
Pell equation,
Diophantine equation.

##### 355 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Hatice Alkan

**Abstract:**

**Keywords:**
Diophantine equation,
Pell equation,
quadratic form.

##### 354 An Analytical Method for Solving General Riccati Equation

**Authors:**
Y. Pala,
M. O. Ertas

**Abstract:**

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

**Keywords:**
Riccati Equation,
ordinary differential equation,
nonlinear differential equation,
analytical solution,
proper solution.

##### 353 The Pell Equation x2 − Py2 = Q

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Canan Kocapınar,
Hatice Alkan

**Abstract:**

**Keywords:**
Pell equation,
solutions of Pell equation.

##### 352 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

**Authors:**
Armend Sh. Shabani

**Abstract:**

**Keywords:**
Pell's equation,
solutions of Pell's equation.

##### 351 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

**Authors:**
Raja Muhammad Asif Zahoor,
Junaid Ali Khan,
I. M. Qureshi

**Abstract:**

**Keywords:**
Riccati Equation,
Non linear ODE,
Fractional differential equation,
Genetic algorithm.

##### 350 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

**Authors:**
Nisha Goyal,
R.K. Gupta

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

**Keywords:**
Sawada-Kotera-Kadomtsev-Petviashivili equation,
Bogoyavlensky-Konoplechenko equation,

##### 349 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

**Authors:**
Makhlouf Mourad,
Medkour Mihoub,
Bouchher Omar,
Messabih Sidi Mohamed,
Benrachedi Khaled

**Abstract:**

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

**Keywords:**
Darcy equation,
middle porous,
continuity equation,
Peng Robinson equation,
mobility.

##### 348 The Pell Equation x2 − (k2 − k)y2 = 2t

**Authors:**
Ahmet Tekcan

**Abstract:**

**Keywords:**
Pell equation,
solutions of Pell equation.

##### 347 Lagrange-s Inversion Theorem and Infiltration

**Authors:**
Pushpa N. Rathie,
Prabhata K. Swamee,
André L. B. Cavalcante,
Luan Carlos de S. M. Ozelim

**Abstract:**

**Keywords:**
Green-Ampt Equation,
Lagrange's Inversion
Theorem,
Talsma-Parlange Equation,
Three-Parameter Infiltration
Equation