Search results for: thermal history
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1714

Search results for: thermal history

1714 A Thermal-Shock Fatigue Design of Automotive Heat Exchangers

Authors: A. Chidley, F. Roger, A. Traidia

Abstract:

A method is presented for using thermo-mechanical fatigue analysis as a tool in the design of automotive heat exchangers. Use of infra-red thermography to measure the real thermal history in the heat exchanger reduces the time necessary for calculating design parameters and improves prediction accuracy. Thermal shocks are the primary cause of heat exchanger damage. Thermo-mechanical simulation is based on the mean behavior of the aluminum tubes used in the heat exchanger. An energetic fatigue criterion is used to detect critical zones.

Keywords: Heat exchanger, Fatigue, Thermal shocks. I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1713 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

Authors: J. Dutta, Narendranath S.

Abstract:

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718
1712 Professionals’ Collaboration on Strengthening the Teaching of History

Authors: L. B. Ni, N. S. Bt Rohadi, H. Bt Alfana, A. S. Bin Ali Hassan, J. Bin Karim, C. Bt Rasin

Abstract:

This paper discusses the shared effort of teaching history in K-12 schools, community colleges, four-year colleges and universities to develop students' understanding of the history and habits of thought history. This study presents and discusses the problems of K-12 schools in colleges and universities, and the establishment of secondary school principals. This study also shows that the changing nature of practice can define new trends and affect the history professional in the classroom. There are many problems that historians and teachers of college faculty share in the history of high school teachers. History teachers can and should do better to get students in the classroom. History provides valuable insights into the information and embedded solid-state analysis models that are conflicting on the planet and are quickly changing exceptionally valuable. The survey results can reflect the history teaching in Malaysia.

Keywords: History issue, history teaching, school-university collaboration, history profession.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
1711 Nonlinear Thermal Expansion Model for SiC/Al

Authors: T.R. Sahroni, S. Sulaiman, I. Romli, M.R. Salleh, H.A. Ariff

Abstract:

The thermal expansion behaviour of silicon carbide (SCS-2) fibre reinforced 6061 aluminium matrix composite subjected to the influenced thermal mechanical cycling (TMC) process were investigated. The thermal stress has important effect on the longitudinal thermal expansion coefficient of the composites. The present paper used experimental data of the thermal expansion behaviour of a SiC/Al composite for temperatures up to 370°C, in which their data was used for carrying out modelling of theoretical predictions.

Keywords: Nonlinear, thermal, fibre reinforced, metal matrixcomposites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
1710 Thermomechanical and Metallurgical Analysis of SMA and GTA Welded Low Carbon Steel Butt Joints

Authors: J. Dutta, P. Pranith Kumar Reddy

Abstract:

This research paper portrays a comparative analysis of thermomechanical behaviour of Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) of low carbon steel of AISI 1020 grade butt joints. The thermal history has been obtained by experimental work. We have focused on temperature dependent cooling rate as depicted by Adam’s two-dimensional model. The effect of moving point heat source of SMAW and GTAW on mechanical properties has been judged by optical and scanning electron micrographs of different regions in weld joints. The microhardness study has been carried to visualize the joint strength due to formation of different phases.

Keywords: Shielded metal arc welding, gas tungsten arc welding, low carbon steel, microhardness study, thermal history, microscopic morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
1709 Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics

Authors: Peter Krupa, Svetozár Malinarič

Abstract:

Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electroceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed.

Keywords: TPS method, thermal conductivity, thermal diffusivity, thermal analysis, electroceramics, firing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6607
1708 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: M. Ferguson, T. Konkova, I. Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: Additive manufacturing, direct energy deposition, electron back-scatter diffraction, finite element analysis, Inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
1707 Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel

Authors: F. Roger, A. Traidia, B. Reynier

Abstract:

Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.

Keywords: Arc welding, Weld pool, Fluid flow, Metallurgical transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
1706 Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite

Authors: N. Sozbir, M. Bulut, M.F.Oktem, A.Kahriman, A. Chaix

Abstract:

TUSAT is a prospective Turkish Communication Satellite designed for providing mainly data communication and broadcasting services through Ku-Band and C-Band channels. Thermal control is a vital issue in satellite design process. Therefore, all satellite subsystems and equipments should be maintained in the desired temperature range from launch to end of maneuvering life. The main function of the thermal control is to keep the equipments and the satellite structures in a given temperature range for various phases and operating modes of spacecraft during its lifetime. This paper describes the thermal control design which uses passive and active thermal control concepts. The active thermal control is based on heaters regulated by software via thermistors. Alternatively passive thermal control composes of heat pipes, multilayer insulation (MLI) blankets, radiators, paints and surface finishes maintaining temperature level of the overall carrier components within an acceptable value. Thermal control design is supported by thermal analysis using thermal mathematical models (TMM).

Keywords: Spacecraft thermal control, design of thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
1705 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys

Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge

Abstract:

In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.

Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1704 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: Ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1703 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer

Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari

Abstract:

Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.

Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1702 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: Ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1701 Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors

Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari

Abstract:

The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.

Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1700 Thermal Diffusivity Measurement of Cadmium Sulphide Nanoparticles Prepared by γ-Radiation Technique

Authors: Azmi Zakaria, Reza Zamiri, Parisa Vaziri, Elias Saion, M. Shahril Husin

Abstract:

In this study we applied thermal lens (TL) technique to study the effect of size on thermal diffusivity of cadmium sulphide (CdS) nanofluid prepared by using γ-radiation method containing particles with different sizes. In TL experimental set up a diode laser of wavelength 514 nm and intensity stabilized He-Ne laser were used as the excitation source and the probe beam respectively, respectively. The experimental results showed that the thermal diffusivity value of CdS nanofluid increases when the of particle size increased.

Keywords: Thermal diffusivity, nanofluids, thermal lens

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364
1699 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: Building envelope, Building mass effect, Building thermal comfort, Building thermal performance, School building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
1698 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate

Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy

Abstract:

LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.

Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1697 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: Austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320
1696 Experimental Investigation the Effectiveness of Using Heat Pipe on the Spacecraft Mockup Panel

Authors: M. Abdou, M. K. Khalil

Abstract:

The heat pipe is a thermal device which allows efficient transport of thermal energy. The experimental work of this research was split into two phases; phase 1 is the development of the facilities, material and test rig preparation. Phase 2 is the actual experiments and measurements of the thermal control mockup inside the modified vacuum chamber (MVC). Due to limited funds, the development on the thermal control subsystem was delayed and the experimental facilities such as suitable thermal vacuum chamber with space standard specifications were not available from the beginning of the research and had to be procured over a period of time. In all, these delays extended the project by one and a half year. Thermal control subsystem needs a special facility and equipment to be tested. The available vacuum chamber is not suitable for the thermal tests. Consequently, the modification of the chamber was a must. A vacuum chamber has been modified to be used as a Thermal Vaccum Chamber (TVC). A MVC is a vacuum chamber modified by using a stainless mirror box with perfect reflectability and the infrared lamp connected with the voltage regulator to vary the lamp intensity as it will be illustrated through the paper.

Keywords: Heat pipe, thermal control, thermal vacuum chamber, satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
1695 Thermal Analysis of Tibetan Vernacular Building - Case of Lhasa

Authors: Lingjiang Huang, Fangfang Liu

Abstract:

Vernacular building is considered as sustainable in energy consumption and environment and its thermal performance is more and more concerned by researchers. This paper investigates the thermal property of the vernacular building in Lhasa by theoretical analysis on the aspects of building form, envelope and materials etc. The values of thermal resistance and thermal capacity of the envelope are calculated and compared with the current China building code and modern building case. And it is concluded that Lhasa vernacular building meets the current China building code of thermal standards and have better performance in some aspects, which is achieved by various passive means with close response to local climate conditions.

Keywords: Climate, Vernacular Building, Thermal Property, Passive Means

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
1694 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
1693 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
1692 Thermal Carpet Cloaking Achieved by Layered Metamaterial

Authors: Bang-Shiuh Chen, Lien-Wen Chen

Abstract:

We have devised a thermal carpet cloak theoretically and implemented in silicon using layered metamaterial. The layered metamaterial is composed of single crystalline silicon and its phononic crystal. The design is based on a coordinate transformation. We demonstrate the result with numerical simulation. Great cloaking performance is achieved as a thermal insulator is well hidden under the thermal carpet cloak. We also show that the thermal carpet cloak can even the temperature on irregular surface. Using thermal carpet cloak to manipulate the heat conduction is effective because of its low complexity.

Keywords: Metamaterial, heat conduction, cloaking, phononic crystal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
1691 Analyzing and Comparing the Hot-spot Thermal Models of HV/LV Prefabricated and Outdoor Oil-Immersed Power Transformers

Authors: Ali Mamizadeh, Ires Iskender

Abstract:

The most important parameter in transformers life expectancy is the hot-spot temperature level which accelerates the rate of aging of the insulation. The aim of this paper is to present thermal models for transformers loaded at prefabricated MV/LV transformer substations and outdoor situations. The hot-spot temperature of transformers is studied using their top-oil temperature rise models. The thermal models proposed for hot-spot and top-oil temperatures of different operating situations are compared. Since the thermal transfer is different for indoor and outdoor transformers considering their operating conditions, their hot-spot thermal models differ from each other. The proposed thermal models are verified by the results obtained from the experiments carried out on a typical 1600 kVA, 30 /0.4 kV, ONAN transformer for both indoor and outdoor situations.

Keywords: Hot-spot Temperature, Dynamic Thermal Model, MV/LV Prefabricated, Oil Immersed Transformers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
1690 An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids

Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani

Abstract:

Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.

Keywords: Critical particle size, nanofluid, model, and thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
1689 Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow

Authors: Thomas Fiedler, Irina V. Belova, Graeme E. Murch

Abstract:

Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.

Keywords: Coupled Analysis, Laminar Flow, Lattice MonteCarlo, Thermal Diffusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
1688 A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe

Authors: Chih-Chieh Chen, Chih-Hao Chen, Guan-Wei Wu, Sih-Li Chen

Abstract:

A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.

Keywords: PET, heat pipe, thermal resistance, effective thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930
1687 Thermal Analysis of Toroidal Transformers Using Finite Element Method

Authors: Adrian T.

Abstract:

In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Temperature distribution, thermal analysis, toroidal transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518
1686 A Numerical Study on Thermal Dissociation of H2S

Authors: M. Moghiman, S. M. Javadi, A. R. Moghiman, S. Baghdar Hosseini

Abstract:

The main issue in sweetening natural gas is H2S dissociation. The present study is concerned with simulating thermal dissociation of H2S in industrial natural gas carbon black furnace. The comparison of calculated results against experimental measurements shows good agreement. The results show that sulfur derived from H2S thermal dissociation peaked at φ=0.95. H2S thermal dissociation is enhanced in equivalence ratio upper than 1 and H2S oxidization is increased in equivalence ratio lower than 1. H2 concentration of H2S thermal dissociation is increased with increase of equivalence ratio up to 1. Also, H2S concentration decreased in outlet as equivalence ratio increases. H2S thermal dissociation to hydrogen and Sulfur reduces its toxic characteristics and make economical benefits.

Keywords: Equivalence ratio, H2S, natural gas furnace, thermaldissociation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
1685 Re-telling Goa's History: The Margin Narrative

Authors: Anna Beatriz Paula

Abstract:

This paper presents the first reflexions about Margaret Mascarenhas-s novel, “Skin", based on post-colonial critic perception of History and its agents. By doing so, this study will put light on a literary corpus of Indian Literatures: the Goan Literature whose cultural basis creates an unique historiographic metafiction conducted by different characters that one by one plays the narrator role.

Keywords: Goa, History, Literature, Metafiction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087