Search results for: spray pyrolysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 147

Search results for: spray pyrolysis

147 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf

Abstract:

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.

Keywords: Thin films, cuprous oxide, spray pyrolysis, precursor solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
146 Preparation and Evaluation of New Nanocatalysts for Selective Oxidation of H2S to Sulfur

Authors: Mohammad Rezaee, Mohammad Kazemeini, Ali Morad Rashidi, Moslem Fattahi

Abstract:

Selective oxidation of H2S to elemental sulfur in a fixed bed reactor over newly synthesized alumina nanocatalysts was physio-chemically investigated and results compared with a commercial Claus catalyst. Amongst these new materials, Al2O3- supported sodium oxide prepared with wet chemical technique and Al2O3 nanocatalyst prepared with spray pyrolysis method were the most active catalysts for selective oxidation of H2S to elemental sulfur. Other prepared nanocatalysts were quickly deactivated, mainly due to the interaction with H2S and conversion into sulfides.

Keywords: H2S, Claus process, Al2O3, Spray pyrolysis method, Wet chemical technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
145 Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres

Authors: Charu Dwivedi, V. Dutta

Abstract:

Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 2500C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration was found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

Keywords: TiO2 hollow microspheres, spray pyrolysis, electric field, microscopy, microstructures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
144 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray

Authors: M. M. Seraj, M. S. Gadala

Abstract:

This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.

Keywords: Water spray, wetting, aluminum plate, flow rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
143 Pyrolysis of Rice Husk in a Fixed Bed Reactor

Authors: Natarajan. E, Ganapathy Sundaram. E

Abstract:

Fixed-bed slow pyrolysis experiments of rice husk have been conducted to determine the effect of pyrolysis temperature, heating rate, particle size and reactor length on the pyrolysis product yields. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 0.60-1.18 mm. The optimum process conditions for maximum liquid yield from the rice husk pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 500°C, particle size of 1.18-1.80 mm, with a heating rate of 60°C/min in a 300 mm length reactor. The obtained yield of, liquid, gas and solid were found be in the range of 22.57-31.78 %, 27.75-42.26 % and 34.17-42.52 % (all weight basics) respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and reactor length. The functional groups and chemical compositions present in the liquid obtained at optimum conditions were identified by Fourier Transform-Infrared (FT-IR) spectroscopy and Gas Chromatography/ Mass Spectroscopy (GC/MS) analysis respectively.

Keywords: Slow pyrolysis, Rice husk, Recycling, Biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3846
142 Synthesis of Novel Nanostructured Catalysts for Pyrolysis of Biomass

Authors: Phuong T. Dang, Hy G. Le, Giang T. Pham, Hong T. M. Vu, Kien T, Nguyen, Canh D. Dao, Giang H. Le, Hoa T. K. Tran, Quang K. Nguyen, Tuan A. Vu

Abstract:

Nanostructured catalysts were successfully prepared by acidification of diatomite and regeneration of FCC spent catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41.4% can be obtained by pyrolysis with catalysts at 450oC as compared to that of the pyrolysis without catalyst at 550oC. The bio-oil yield reached a maximum of 42.55% at the pyrolysis temperature of 500oC with catalytic content of 20%. Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low oxygenated compounds.

Keywords: Acidified diatomite, biomass, catalytic pyrolysis, bio-oil, nanostructured catalysts, regenerated FCC catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
141 Investigation on Fluid Flow and Heat Transfer Characteristics in Spray Cooling Systems Using Nanofluids

Authors: D. H. Lee, Nur Irmawati

Abstract:

This paper aims to study the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: Numerical simulation, Spray cooling, Heat transfer, Nanofluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
140 Effect of Tube Materials and Special Coating on Coke Deposition in the Steam Cracking of Hydrocarbons

Authors: A. Niaei, D. Salari , N. Daneshvar, A. Chamandeh, R. Nabavi

Abstract:

The steam cracking reactions are always accompanied with the formation of coke which deposits on the walls of the tubular reactors. The investigation has attempted to control catalytic coking by the applying aluminum, zinc and ceramic coating like aluminum-magnesium by thermal spray and pack cementation method. Rate of coke formation during steam cracking of naphtha has been investigated both for uncoated stainless steel (with different alloys) and metal coating constructed with thermal Spray and pack cementation method with metal powders of Aluminum, Aluminum-Magnesium, zinc, silicon, nickel and chromium. The results of the study show that passivating the surface of SS321 with a coating of Aluminum and Aluminum-Magnesium can significantly reduce the rate of coke deposition during naphtha pyrolysis. SEM and EDAX techniques (Philips XL Series) were used to examine the coke deposits formed by the metal-hydrocarbon reactions. Our objective was to separate the different stages by identifying the characteristic morphologies.

Keywords: Steam Cracking, Pyrolysis, Coke deposition, thermalspray, Pack Cementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
139 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: Waste oil, pyrolysis oil, Y zeolite, gasoline, diesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
138 Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products

Authors: Merve Sogancioglu, Esra Yel, Ferda Tartar, Nihan Canan Iskender

Abstract:

Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.

Keywords: Biochar, co-pyrolysis, waste plastic, waste olive pomace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
137 Pyrolysis Characteristics and Kinetics of Macroalgae Biomass Using Thermogravimetric Analyzer

Authors: Zhao Hui, Yan Huaxiao, Zhang Mengmeng, Qin Song

Abstract:

The pyrolysis characteristics and kinetics of seven marine biomass, which are fixed Enteromorpha clathrata, floating Enteromorpha clathrata, Ulva lactuca L., Zosterae Marinae L., Thallus Laminariae, Asparagus schoberioides kunth and Undaria pinnatifida (Harv.), were studied with thermogravimetric analysis method. Simultaneously, cornstalk, which is a grass biomass, and sawdust, which is a lignocellulosic biomass, were references. The basic pyrolysis characteristics were studied by using TG- DTG-DTA curves. The results showed that there were three stages (dehydration, dramatic weight loss and slow weight loss) during the whole pyrolysis process of samples. The Tmax of marine biomass was significantly lower than two kinds of terrestrial biomass. Zosterae Marinae L. had a relatively high stability of pyrolysis, but floating Enteromorpha clathrata had lowest stability of pyrolysis and a good combustion characteristics. The corresponding activation energy E and frequency factor A were obtained by Coats-Redfern method. It was found that the pyrolysis reaction mechanism functions of three kinds of biomass are different.

Keywords: macroalgae biomass, pyrolysis, thermogravimetric analysis, thermolysis kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
136 Effect of Fuel Spray Angle on Soot Formation in Turbulent Spray Flames

Authors: K. Bashirnezhad, M. Moghiman, M. Javadi Amoli, F. Tofighi, S. Zabetnia

Abstract:

Results are presented from a combined experimental and modeling study undertaken to understand the effect of fuel spray angle on soot production in turbulent liquid spray flames. The experimental work was conducted in a cylindrical laboratory furnace at fuel spray cone angle of 30º, 45º and 60º. Soot concentrations inside the combustor are measured by filter paper technique. The soot concentration is modeled by using the soot particle number density and the mass density based acetylene concentrations. Soot oxidation occurred by both hydroxide radicals and oxygen molecules. The comparison of calculated results against experimental measurements shows good agreement. Both the numerical and experimental results show that the peak value of soot and its location in the furnace depend on fuel spray cone angle. An increase in spray angle enhances the evaporating rate and peak temperature near the nozzle. Although peak soot concentration increase with enhance of fuel spray angle but soot emission from the furnace decreases.

Keywords: Soot, spray angle, turbulent flames, liquid fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
135 Influence of Reaction Temperature and Water Content on Wheat Straw Pyrolysis

Authors: N.Ibrahim, Peter A. Jensen, K. Dam-Johansen, Roshafima.R. Ali, Rafiziana.M. Kasmani

Abstract:

The aim of this study was to investigate the influence of reaction temperature and wheat straw moisture content on the pyrolysis product yields, in the temperature range of 475-575 °C. Samples of straw with moisture contents from 1.5 wt % to 15.0 wt % were fed to a bench scale Pyrolysis Centrifuge Reactor (PCR). The experimental results show that the changes in straw moisture content have no significant effect on the distribution of pyrolysis product yields. The maximum bio-oil yields approximately 60 (wt %, on dry ash free feedstock basis) was observed around 525 °C - 550 °C for all straw moisture levels. The water content in the wet straw bio-oil was the highest. The heating value of bio-oil and solid char were measured and the percentages of its energy distribution were calculated. The energy distributions of bio-oil, char and gas were 56- 69 % 24-33 %, and 2-19 %, respectively.

Keywords: Flash pyrolysis, moisture content, wheat straw, biooil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
134 Hydrogen from Waste Tyres

Authors: Ibrahim F. Elbaba, Paul T. Williams

Abstract:

Hydrogen is regarded to play an important role in future energy systems because it can be produced from abundant resources and its combustion only generates water. The disposal of waste tyres is a major problem in environmental management throughout the world. The use of waste materials as a source of hydrogen is particularly of interest in that it would also solve a waste treatment problem. There is much interest in the use of alternative feedstocks for the production of hydrogen since more than 95% of current production is from fossil fuels. The pyrolysis of waste tyres for the production of liquid fuels, activated carbons and gases has been extensively researched. However, combining pyrolysis with gasification is a novel process that can gasify the gaseous products from pyrolysis. In this paper, an experimental investigation into the production of hydrogen and other gases from the bench scale pyrolysis-gasification of tyres has been investigated. Experiments were carried using a two stage system consisting of pyrolysis of the waste tyres followed by catalytic steam gasification of the evolved gases and vapours in a second reactor. Experiments were conducted at a pyrolysis temperature of 500 °C using Ni/Al2O3 as a catalyst. The results showed that there was a dramatic increase in gas yield and the potential H2 production when the gasification temperature was increased from 600 to 900 oC. Overall, the process showed that high yields of hydrogen can be produced from waste tyres.

Keywords: Catalyst, Hydrogen, Pyrolysis, Gasification, Tyre, Waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
133 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali

Abstract:

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Keywords: Biochar, biomass, cassava wastes, corn cob, pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
132 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando

Abstract:

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.

Keywords: Bubbling fluidized bed, pyrolysis time, segregation effects, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
131 Effect of Humidity on in-Process Crystallization of Lactose during Spray Drying

Authors: Amirali Ebrahimi, T. A. G. Langrish

Abstract:

The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.

Keywords: Lactose, crystallization, spray drying, humid air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3381
130 Press Hardening of Tubes with Additional Interior Spray Cooling

Authors: B.-A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier

Abstract:

Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.

Keywords: 22MnB5, hollow profiles, press hardening, tubes, water-air spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
129 Slow Pyrolysis of Biowastes: Environmental, Exergetic, and Energetic Assessment

Authors: Daniela Zalazar-Garcia, Erick Torres, Germán Mazza

Abstract:

Slow pyrolysis of a pellet of pistachio waste was studied using a lab-scale stainless-steel reactor. Experiments were conducted at different heating rates (5, 10, and 15 K/min). A 3-E (environmental, exergetic, and energetic) analysis for the processing of 20 kg/h of biowaste was carried out. Experimental results showed that biochar and gas yields decreased with an increase in the heating rate (43% to 36% and 28% to 24%, respectively), while the bio-oil yield increased (29% to 40%). Finally, from the 3-E analysis and the experimental results, it can be suggested that an increase in the heating rate resulted in a higher pyrolysis exergetic efficiency (70%), due to an increase of the bio-oil yield with high-energy content.

Keywords: 3E assessment, biowaste pellet, life cycle assessment, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
128 The Catalytic Effects of Potassium Dichromate on the Pyrolysis of Polymeric Mixtures Part I: Hazelnut Shell and Polyethylene Oxide and their Blend Cases

Authors: A. Caglar, B. Aydinli

Abstract:

The pyrolysis of hazelnut shell, polyethylene oxide and their blends were carried out catalytically at 500 and 650 ºC. Potassium dichromate was chosen according to its oxidative characteristics and decomposition temperature (500 ºC) where decomposition products are CrO3 and K2CrO4. As a main effect, a remarkable increase in gasification was observed using this catalyst for pure components and blends especially at 500 ºC rather than 650 ºC contrary to the main observation in the pyrolysis process. The increase in gas product quantity was compensated mainly with decrease in solid product and additionally in some cases liquid products.

Keywords: Hazelnut shell, Polyethylene oxide, Potassium dichromate, Pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
127 Product Yields and Chemical Compounds of Cogongrass by Pyrolysis in Twin Screw Feeder

Authors: Kittiphop Promdee, Tharapong Vitidsant

Abstract:

Continuous pyrolysis of Cogongrass by control temperature in the novel pyrolysis reactor were conducted at three difference temperatures 400, 450 and 500°C. Preliminary calculate of the product yields founded the liquid yield of Cogongrass was highest of 41.45 %, at 500 oC. Indicated that the liquid yield from Cogongrass had good received yields because it gave over 40 % and its produced more liquid than that solid and gas. The compounds detected in bio-oil from Cogongrass showed the functional group, especially; Phenol, Phenol, 2,5-dimethyl, Phenol, 3-methyl, 2- methyl-1,3-oxathiofane, Benzene,1-ethyl-4-methoxy, 2-Cyclopenten- 1-one,2,3-dimethyl, 2- Cyclopenten-1- one, 3-Methyl.

Keywords: Pyrolysis, Cogongrass, Product Yields, Chemical Compounds, Twin Screw Feeder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
126 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).

Keywords: Bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
125 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
124 Evaluation of Context Information for Intermittent Networks

Authors: S. Balaji, E. Golden Julie, Y. Harold Robinson

Abstract:

The context aware adaptive routing protocol is presented for unicast communication in intermittently connected mobile ad hoc networks (MANETs). The selection of the node is done by the Kalman filter prediction theory and it also makes use of utility functions. The context aware adaptive routing is defined by spray and wait technique, but the time consumption in delivering the message is too high and also the resource wastage is more. In this paper, we describe the spray and focus routing scheme for avoiding the existing problems.

Keywords: Context aware adaptive routing, Kalman filter prediction, spray and wait, spray and focus, intermittent networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
123 Kinetics of Polyethylene Terephthalate (PET)and Polystyrene (PS) Dynamic Pyrolysis

Authors: S.M. Al-Salem, P. Lettieri

Abstract:

Thermo-chemical treatment (TCT) such as pyrolysis is getting recognized as a valid route for (i) materials and valuable products and petrochemicals recovery; (ii) waste recycling; and (iii) elemental characterization. Pyrolysis is also receiving renewed attention for its operational, economical and environmental advantages. In this study, samples of polyethylene terephthalate (PET) and polystyrene (PS) were pyrolysed in a microthermobalance reactor (using a thermogravimetric-TGA setup). Both polymers were prepared and conditioned prior to experimentation. The main objective was to determine the kinetic parameters of the depolymerization reactions that occur within the thermal degradation process. Overall kinetic rate constants (ko) and activation energies (Eo) were determined using the general kinetics theory (GKT) method previously used by a number of authors. Fitted correlations were found and validated using the GKT, errors were within ± 5%. This study represents a fundamental step to pave the way towards the development of scaling relationship for the investigation of larger scale reactors relevant to industry.

Keywords: Kinetics, PET, PS, Pyrolysis, Recycling, Petrochemicals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3668
122 Technology of Thermal Spray Coating Machining

Authors: Jana Petrů, Tomáš Zlámal, Robert Čep, Lenka Čepová

Abstract:

This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials – cermets – is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem.

Keywords: Coating, aerospace, plasma, grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3748
121 Thermochemical Conversion: Jatropha curcus in Fixed Bed Reactor Using Slow Pyrolysis

Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma

Abstract:

Thermochemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.

Keywords: Jatropha curcus, Thermo-chemical, Pyrolysis, Product composition, Yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
120 The Catalytic Effects of Potassium Dichromate on the Pyrolysis of Polymeric Mixtures Part II: Hazelnut Shell and Ultra-high Molecular Weight Polyethylene and their Blend Cases

Authors: B. Aydinli, A. Caglar

Abstract:

Renewable energy sources have gained ultimate urgency due to the need of the preservation of the environment for a sustainable development. Pyrolysis is an ultimate promising process in the recycling and acquisition of precious chemicals from wastes. Here, the co-pyrolysis of hazelnut shell with ultra-high molecular weight polyethylene was carried out catalytically and noncatalytically at 500 and 650 ºC. Potassium dichromate was added in certain amounts to act as a catalyst. The liquid, solid and gas products quantities were determined by gravimetry. As a main result, remarkable increases in gasification were observed by using this catalyst for pure components and their blends especially at 650 ºC. The increase in gas product quantity was compensated mainly with the decreases in the solid products and additionally in some cases liquid products quantities. These observations may stem from mainly the activation of carbon-carbon bonds rather than carbon-hydrogen bonds via potassium dichromate. Also, the catalytic effect of potassium dichromate on HS: PEO and HS: UHMWPE co-pyrolysis was compared.

Keywords: Hazelnut shell, Polyethylene oxide, Potassium Dichromate, Pyrolysis, UHMWPE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
119 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: Pyrolysis, olive pomace, char, biocomposite, PE plastics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
118 Modeling Drying and Pyrolysis of Moist Wood Particles at Slow Heating Rates

Authors: Avdhesh K. Sharma

Abstract:

Formulation for drying and pyrolysis process in packed beds at slow heating rates is presented. Drying of biomass particles bed is described by mass diffusion equation and local moisture-vapour-equilibrium relations. In gasifiers, volatilization rate during pyrolysis of biomass is modeled by using apparent kinetic rate expression, while product compositions at slow heating rates is modeled using empirical fitted mass ratios (i.e., CO/CO2, ME/CO2, H2O/CO2) in terms of pyrolysis temperature. The drying module is validated fairly with available chemical kinetics scheme and found that the testing zone in gasifier bed constituted of relatively smaller particles having high airflow with high isothermal temperature expedite the drying process. Further, volatile releases more quickly within the shorter zone height at high temperatures (isothermal). Both, moisture loss and volatile release profiles are found to be sensitive to temperature, although the influence of initial moisture content on volatile release profile is not so sensitive.

Keywords: Modeling downdraft gasifier, drying, pyrolysis, moist woody biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762