Search results for: silicone composite insulator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 773

Search results for: silicone composite insulator

773 Electric Field Analysis and Experimental Evaluation of 400 kV Silicone Composite Insulator

Authors: M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya

Abstract:

In electrical power system, high voltage insulators are necessary for consistent performance. All insulators are exposed to different mechanical and electrical stresses. Mechanical stresses occur due to various loads such as wind load, hardware and conductors weight. Electrical stresses are due to over voltages and operating voltages. The performance analysis of polymer insulators is an essential, as most of the electrical utility companies are employing polymer insulators for new and updated transmission lines. In this paper, electric field is analyzed for 400 kV silicone (SiR) composite insulator by COULOMB 3D software based on boundary element method. The field results are compared with EPRI reference values. Our results proved that values at critical regions are very less compared to EPRI reference values. And also experimentally 400 kV single V suspension string is evaluated as per IEC standards.

Keywords: Electric field analysis, silicone composite insulator, boundary element method, RIV, Corona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
772 Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai

Abstract:

This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.

Keywords: Electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
771 Hydrophobic Characteristics of EPDM Composite Insulators in Simulated Arid Desert Environment

Authors: Yasin Khan

Abstract:

Overhead electrical insulators form an important link in an electric power system. Along with the traditional insulators (i.e. glass and porcelain, etc) presently the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters such temperature, environmental pollution, UV-radiations, etc. which seriously effect their electrical, chemical and hydrophobic properties. The UV radiation level in the central region of Saudi Arabia is high as compared to the IEC standard for the accelerated aging of the composite insulators. Commonly used suspension type of composite EPDM (Ethylene Propylene Diene Monomer) insulator was subjected to accelerated stress aging as per modified IEC standard simulating the inland arid deserts atmospheric condition and also as per IEC-61109 standard. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that EPDM insulator loses it hydrophobic properties proportional to the intensity of UV irradiations and its rate of recovery is also very low as compared to Silicone Rubber insulator.KeywordsEPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Keywords: EPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
770 Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai, T. Kulworawanichpong

Abstract:

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Keywords: electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
769 Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method

Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha

Abstract:

High voltage insulator has to withstand sever electrical stresses. Higher electrical stresses lead to erosion of the insulator surface. Degradation of insulating properties leads to flashover and in some extreme cases it may cause to puncture. For analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By minimizing the electrical stresses, reliability of the power system will improve. In this paper electric field intensity at critical regions of 400 kV silicone composite insulator is analyzed using finite element method. Insulator is designed using FEMM-2D software package. Electric Field Analysis (EFA) results are analyzed for five cases i.e., only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two sides grading ring. These EFA results recommended that two sides grading ring is better for minimization of electrical stresses and improving life span of insulator.

Keywords: Polymer insulator, electric field analysis, numerical methods, finite element method, FEMM-2D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
768 Comparison of Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulator under Salt Water Dip Wheel Test

Authors: J. Grasaesom, S. Thong-om, W. Payakcho, A. Oonsivilai, B. Marungsri

Abstract:

This paper presents the experimental results on ageing deterioration of silicone rubber outdoor polymer insulator under salt water dip wheel test based on IEC 62217. In order to comparison effect of chemical contents, silicone rubber outdoor polymer insulators having same configuration and leakage distant from two manufactures were tested together continuously 30,000 test cycles. Many discharge activities were observed in during the test. After 30,000 test cycles, in spite of same configuration, differences in degree of surface aging were observed. Physical analysis such as decreasing in hydrophobicity and increasing in hardness measurement were measured on two-type tested specimen surface in order to confirm degree of surface ageing. Furthermore, chemical analysis by ATR-FTIR to diagnose the chemical change of tested specimen surface was conducted to confirm the physical analysis results.

Keywords: ageing of silicone rubber, salt water dip wheel test, silicone rubber polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3442
767 Ageing Deterioration of Silicone Rubber Polymer Insulator under Salt Water Dip Wheel Test

Authors: J. Grasaesom, S.Thong-om, W. Payakcho, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber polymer insulators for 22 kV systems under salt water dip wheel test based on IEC 62217. Straight shed silicone rubber polymer insulators having leakage distance 685 mm were tested continuously 30,000 cycles. One test cycle includes 4 positions, energized, de-energized, salt water dip and deenergized, respectively. For one test cycle, each test specimen remains stationary for about 40 second in each position and takes 8 second for rotate to next position. By visual observation, sever surface erosion was observed on the trunk near the energized end of tested specimen. Puncture was observed on the upper shed near the energized end. In addition, decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Furthermore, chemical analysis by ATR-FTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen.

Keywords: ageing of silicone rubber, salt water dip wheeltest, silicone rubber polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
766 Study of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators

Authors: S. Thong-om, W. Payakcho, J. Grasasom, B. Marungsri

Abstract:

This paper presents the experimental results of salt fog ageing test of silicone rubber housing material for outdoor polymer insulator based on IEC 61109. Four types of HTV silicone rubber sheet with different amount of ATH were tested continuously 1000<=hours in salt fog chamber. By visual observation after tested, slightly surface erosion was observed on tested specimen surface near the energized end. Furthermore, increasing in hardness and reduction in hydrophobicity were measured on tested specimen comparing with new specimen. In addition, chemical analysis by ATRFTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen. Physical and chemical results confirmed the experimental results as well.

Keywords: Accelerated ageing test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
765 Silicone on Blending Vegetal Petrochemical Based Polyurethane

Authors: Flora E. Firdaus

Abstract:

Polyurethane foam (PUF) is formed by a chemical reaction of polyol and isocyanate. The aim is to understand the impact of Silicone on synthesizing polyurethane in differentiate volume of molding. The method used was one step process, which is simultaneously caried out a blending polyol (petroleum polyol and soybean polyol), a TDI (2,4):MDI (4,4-) (80:20), a distilled water, and a silicone. The properties of the material were measured via a number of parameters, which are polymer density, compressive strength, and cellular structures. It is found that density of polyurethane using silicone with volume of molding either 250 ml or 500 ml is lower than without using silicone.

Keywords: soybean, petro, silicone, polyurethane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
764 Comparison of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators

Authors: S.Thong-Om, W. Payakcho, J. Grasasom, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the comparison ageing deterioration of silicone rubber housing material for outdoor polymer insulators by using salt fog ageing test based on IEC 61109 and outdoor exposure test.Four types of high temperature silicone vulcanized silicone rubber sheet with different amount of ATH were used as testing specimen. For salt fog ageing test, the specimens were tested continuously 1000 hours with energized in test chamber. For outdoor exposure test, the specimens were hung continuously 18 months without energized. Physical and chemical analyses were conducted to evaluate degree of ageing deterioration of tested specimens. Slightly surface erosion was observed on specimen surface after salt fog ageing test and no erosion was observed on surface of outdoor exposure specimen. However, comparable degree of ageing deterioration can be seen from surface analysis results.

Keywords: Accelerated ageing test, outdoor exposure test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3898
763 Study of Hydrophobicity Effect on 220kV Double Tension Insulator String Surface Using Finite Element Method

Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Vijaya Haritha

Abstract:

Insulators are one of the most significant equipment in power system. The insulators’ operation may affect the power flow, line loss and reliability. The electrical parameters that influence the performance of insulator are surface leakage current, corona and dry band arcing. Electric field stresses on the insulator surface will degrade the insulating properties and lead to puncture. Electric filed stresses can be analyzed by numerical methods and experimental evaluation. As per economic aspects, evaluation by numerical methods are best. In outdoor insulation, a hydrophobic surface can facilitate to prevent water film formation on the insulation surface, which is decisive for diminishing leakage currents and partial discharge (PD) under heavy polluted environments and harsh weather conditions. Polymer materials like silicone rubber have an outstanding hydrophobic property among general insulation materials. In this paper, electrical field intensity of 220 kV porcelain and polymer double tension insulator strings at critical regions are analyzed and compared by using Finite Element Method. Hydrophobic conditions of polymer insulator with equal and unequal water molecule conditions are verified by using finite element method.

Keywords: Porcelain insulator, polymer insulator, electric field analysis, EFA, finite element method, FEM, hydrophobicity, FEMM-2D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
762 Comparison Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulators in Artificial Accelerated Salt Fog Ageing Test

Authors: S.Thong-Om, W. Payakcho, J. Grasaesom, A. Oonsivilai, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber outdoor polymer insulators in salt fog ageing test based on IEC 61109. Specimens made ofHTV silicone rubber with ATH content having three different configurations, straight shedsalternated sheds, and incline and alternate sheds, were tested continuously 1000 hrs.in artificial salt fog chamber. Contamination level, reduction of hydrophobicity and hardness measurement were used as physical damaged inspection techniques to evaluate degree of surface deterioration. In addition, chemical changing of tested specimen surface was evaluated by ATR-FTIRto confirm physical damaged inspection. After 1000 hrs.of salt fog test, differences in degree of surface deterioration were observed on all tested specimens. Physical damaged inspection and chemical analysis results confirmed the experimental results as well.

Keywords: Ageing deterioration, Silicone rubber, Polymer Insulator, Salt fog ageing test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
761 Seasonal Based Pollution Performance of 11kV and 33kV Silicon Composite Insulators

Authors: N. Sumathi, R. Srinivasa Rao

Abstract:

This paper presents the experimental results of 11 kV and 33 kV silicon composite insulators under artificial salt and urea polluted conditions. The tests were carried out under different seasons like summer, winter, and monsoon. The artificial pollution is prepared by properly dissolving the salt and urea in the water. The prepared salt and urea pollutions are sprayed on the insulators and dried up for sufficiently large time. The process is continued until a uniform layer is formed on the surface of insulator. For each insulator rating, four samples were tested. The maximum leakage current and breakdown voltage were measured. From experimental data, performance of test specimen is evaluated by comparing breakdown voltage and leakage current during different seasons when exposed to salt and urea polluted conditions. From these results the performance of the insulators can be predicted when they are installed in industrial, agricultural, and coastal areas. The experimental tests were carried out in the High Voltage laboratory using two stage cascade transformer having the rating of 1000 kVA, 500 kV.

Keywords: Silicon composite insulators, Urea pollution, Leakage current, Breakdown voltage, salt pollution, artificial pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
760 Difference of Properties on Surface Leakage and Discharge Currents of Porcelain Insulator Material

Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of comparison between leakage currents and discharge currents. The leakage currents were obtained on polluted porcelain insulator. Whereas, the discharge currents were obtained on lightly artificial polluted porcelain specimen. The conducted measurements were leakage current or discharge current and applied voltage. The insulator or specimen was in a hermetically sealed chamber, and the current waveforms were analyzed using FFT. The result indicated that the leakage current (LC) on low RH condition the fifth harmonic would be visible, and followed by the seventh harmonic. The insulator had capacitive property. Otherwise, on 99% relative humidity, the fifth harmonic would also be visible, and the phase angle reached up to 12.2 degree. Whereas, on discharge current, the third harmonic would be visible, and followed by fifth harmonic. The third harmonic would increase as pressure reduced. On this condition, the specimen had a non-linear characteristics

Keywords: leakage current, discharge current, third harmonic, fifth harmonic, porcelain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
759 Artificial Accelerated Ageing Test of Silicone Rubber Housing Material for Lightning Arrester

Authors: W. Payakcho, J. Grasaesom, S. Thong-om, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber housing material for 24kV lightning arrester under artificial accelerated ageing test based on IEC 61109 specifications. Specimens having inclined and alternated shed made of HTV silicone rubber with ATH content and having leakage distance 625 mm were tested continuously 1000 hrs in artificial salt fog chamber. After 1000 hrs of salt fog ageing test, obviously surface erosion was observed on trunk between the upper large shed and the lower small shed near the energized end. Decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Chemical analysis by ATR-FTIR confirmed the observation results.

Keywords: Accelerated ageing test, Silicone rubber housing material, salt fog test, Lightning Arrester, Ageing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896
758 CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration

Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong

Abstract:

Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metal-insulator-Si-insulator-metal nanoplasmonic waveguide and the other is metal-insulator-Si hybrid plasmonic waveguide. Various passive and active photonic devices have been experimentally demonstrated based on these two plasmonic waveguide platforms.

Keywords: Plasmonics, on-chip integration, Silicon photonics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
757 Study on Leakage Current Waveforms of Porcelain Insulator due to Various Artificial Pollutants

Authors: Waluyo, Parouli M. Pakpahan, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of leakage current waveforms which appears on porcelain insulator surface due to existence of artificial pollutants. The tests have been done using the chemical compounds of NaCl, Na2SiO3, H2SO4, CaO, Na2SO4, KCl, Al2SO4, MgSO4, FeCl3, and TiO2. The insulator surface was coated with those compounds and dried. Then, it was tested in the chamber where the high voltage was applied. Using correspondence analysis, the result indicated that the fundamental harmonic of leakage current was very close to the applied voltage and third harmonic leakage current was close to the yielded leakage current amplitude. The first harmonic power was correlated to first harmonic amplitude of leakage current, and third harmonic power was close to third harmonic one. The chemical compounds of H2SO4 and Na2SiO3 affected to the power factor of around 70%. Both are the most conductive, due to the power factor drastically increase among the chemical compounds.

Keywords: Chemical compound, harmonic, porcelain insulator, leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
756 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet

Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci

Abstract:

The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.

Keywords: Insulator, pollution flashover, high impulse voltage, water jet model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
755 Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum

Authors: A.G.E. Sutjipto, Jufriadi, R. Muhida, Afzeri, E.Y. Adesta

Abstract:

Charging and discharging phenomenon on the surface of materials can be found in plasma display panel, spacecraft charging, high voltage insulator, etc. This report gives a simple explanation on this phenomenon. A scanning electron microscope was used not only as a tool to produce energetic electron beam to charge an insulator without metallic coating and to produce a surface discharging (surface breakdown/flashover) but also to observe the visible charging and discharging on the sample surface. A model of electric field distribution on the surface was developed in order to explain charging and discharging phenomena. Since charging and discharging process involves incubation time, therefore this process can be used to evaluate the insulation property of materials under electron bombardment.

Keywords: Flashover, SEM, Electron Bombardment, Electric Field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
754 Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber

Authors: M. S. Hosseini, M. Tazzoli-Shadpour, I. Amjadi, A. A. Katbab, E. Jaefargholi-Rangraz

Abstract:

Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.

Keywords: Biocompatibility, Composite, Organomodified- Nanoclay, Proliferation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
753 Experimental Investigation of Phase Distributions of Two-phase Air-silicone Oil Flow in a Vertical Pipe

Authors: M. Abdulkadir, V. Hernandez-Perez, S. Sharaf, I. S. Lowndes, B. J. Azzopardi

Abstract:

This paper reports the results of an experimental study conducted to characterise the gas-liquid multiphase flows experienced within a vertical riser transporting a range of gas-liquid flow rates. The scale experiments were performed using an air/silicone oil mixture within a 6 m long riser. The superficial air velocities studied ranged from 0.047 to 2.836 m/ s, whilst maintaining a liquid superficial velocity at 0.047 m/ s. Measurements of the mean cross-sectional and time average radial void fraction were obtained using a wire mesh sensor (WMS). The data were recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. For the range of flow conditions studied, the average void fraction was observed to vary between 0.1 and 0.9. An analysis of the data collected concluded that the observed void fraction was strongly affected by the superficial gas velocity, whereby the higher the superficial gas velocity, the higher was the observed average void fraction. The average void fraction distributions observed were in good agreement with the results obtained by other researchers. When the air-silicone oil flows were fully developed reasonably symmetric profiles were observed, with the shape of the symmetry profile being strongly dependent on the superficial gas velocity.

Keywords: WMS, phase distribution, silicone-oil, riser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
752 FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues

Authors: Ahmad Atieh, Masoud Kalantari, Roozbeh Ahmadi, Javad Dargahi, Muthukumaran Packirisamy, Mehrdad Hosseini Zadeh

Abstract:

The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.

Keywords: finite element analysis, minimally invasive surgery, Neo-Hookean hyperelastic materials, tactile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
751 A Study on Evaluation of Strut Type Suspension Noise Caused by Rubber Degradation

Authors: Gugyong Kim, Sugnsu Kang, Yongjun Lee, Sooncheol Park, Wonwook Jung

Abstract:

When cars are released from the factory, strut noises are very small and therefore it is difficult to perceive them. As the use time and travel distance increase, however, strut noises get larger so as to cause users much uneasiness. The noises generated at the field include engine noises and flow noises and therefore it is difficult to clearly discern the noises generated from struts. This study developed a test method which can reproduce field strut noises in the lab. Using the newly developed noise evaluation test, this study analyzed the effects that insulator performance degradation and failure can have on car noises. The study also confirmed that the insulator durability test by the simple back-and-forth motion cannot completely reflect the state of the parts failure in the field. Based on this, the study also confirmed that field noises can be reproduced through a durability test that considers heat aging.

Keywords: Insulator, noise, performance degradation, strut

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
750 Investigation of Multiple Material Gate Impact on Short Channel Effects and Reliability of Nanoscale SOI MOSFETs

Authors: Paniz Tafakori, Ali A. Orouji

Abstract:

In this paper the features of multiple material gate silicon-on-insulator MOSFETs are presented and compared with single material gate silicon-on-insulator MOSFET structures. The results indicate that the multiple material gate structures reduce short channel effects such as drain induce barrier lowering, hot electron effect and better current characteristics in comparison with single material structures

Keywords: Short-channel effects (SCEs), Dual material gate (DMG), Triple material gate (TMG), Pentamerous material gate (PMG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
749 Evaluation of TRIS-DMA-NVP Hydrogels for Making Silicone-Based Contact Lenses

Authors: N. P. D. Tran, H. Q. D. Nguyen, M. C. Yang

Abstract:

In this study, contact lenses were prepared through the polymerization of tris-(trimethyl-silyl-propyl-methacrylate) (TRIS), N,N-dimethylacrylamide (DMA), N-vinylpyrrolidone (NVP), and cross-linked with ethylene glycol dimethylacrylate (EGDMA). The equilibrium water content (EWC), oxygen permeability (Dk), light transmittance, and in vitro cytotoxicity of TRIS-DMA-NVP with various ratios were measured. The results showed that the EWC increased while the Dk decreased with the increase of NVP content. For the sample with 25 wt% NVP, the EWC attained 53% whereas the Dk decreased to 46 barrers. All these lenses exhibited light transmittance over than 95%. In addition, all these lenses exhibited no inhibition to the growth of L292 fibroblasts. Thus, this study showed that TRIS-DMA-NVP can be applicable for making contact lens.

Keywords: DMA, TRIS, NVP, silicone hydrogel, contact lens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
748 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: Mixed matrix membrane, membrane, CO2/CH4 separation, activated carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
747 Simulation of High Performance Nanoscale Partially Depleted SOI n-MOSFET Transistors

Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza

Abstract:

Invention of transistor is the foundation of electronics industry. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been the key for the development of nanoelectronics technology. In the first part of this manuscript, we present a new generation of MOSFET transistors based on SOI (Silicon-On-Insulator) technology. It is a partially depleted Silicon-On-Insulator (PD SOI MOSFET) transistor simulated by using SILVACO software. This work was completed by the presentation of some results concerning the influence of parameters variation (channel length L and gate oxide thickness Tox) on our PDSOI n-MOSFET structure on its drain current and kink effect.

Keywords: SOI technology, PDSOI MOSFET, FDSOI MOSFET, Kink Effect, SILVACO TCAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
746 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System

Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna

Abstract:

In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.

Keywords: Ceramic, composite material, sintering, corundum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
745 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
744 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments

Authors: Melby Chacko, Jagannath Nayak

Abstract:

The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.

Keywords: 6061 Al-SiC composite, Aging curve, Rockwell B hardness, T4, T6 treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707