Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: short run marginal cost

2 Influence of Distributed Generation on Congestion and LMP in Competitive Electricity Market

Authors: Durga Gautam, Mithulananthan Nadarajah

Abstract:

This paper presents the influence of distributed generation (DG) on congestion and locational marginal price (LMP) in an optimal power flow (OPF) based wholesale electricity market. The problem of optimal placement to manage congestion and reduce LMP is formulated for the objective of social welfare maximization. From competitive electricity market standpoint, DGs have great value when they reduce load in particular locations and at particular times when feeders are heavily loaded. The paper lies on the groundwork that solution to optimal mix of generation and transmission resources can be achieved by addressing congestion and corresponding LMP. Obtained as lagrangian multiplier associated with active power flow equation for each node, LMP gives the short run marginal cost (SRMC) of electricity. Specific grid locations are examined to study the influence of DG penetration on congestion and corresponding shadow prices. The influence of DG on congestion and locational marginal prices has been demonstrated in a modified IEEE 14 bus test system.

Keywords: Congestion management, distributed generation, electricity market, locational marginal price, optimal power flow, social welfare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
1 A Nodal Transmission Pricing Model based on Newly Developed Expressions of Real and Reactive Power Marginal Prices in Competitive Electricity Markets

Authors: Ashish Saini, A.K. Saxena

Abstract:

In competitive electricity markets all over the world, an adoption of suitable transmission pricing model is a problem as transmission segment still operates as a monopoly. Transmission pricing is an important tool to promote investment for various transmission services in order to provide economic, secure and reliable electricity to bulk and retail customers. The nodal pricing based on SRMC (Short Run Marginal Cost) is found extremely useful by researchers for sending correct economic signals. The marginal prices must be determined as a part of solution to optimization problem i.e. to maximize the social welfare. The need to maximize the social welfare subject to number of system operational constraints is a major challenge from computation and societal point of views. The purpose of this paper is to present a nodal transmission pricing model based on SRMC by developing new mathematical expressions of real and reactive power marginal prices using GA-Fuzzy based optimal power flow framework. The impacts of selecting different social welfare functions on power marginal prices are analyzed and verified with results reported in literature. Network revenues for two different power systems are determined using expressions derived for real and reactive power marginal prices in this paper.

Keywords: Deregulation, electricity markets, nodal pricing, social welfare function, short run marginal cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322