Search results for: shallow wake flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2380

Search results for: shallow wake flow

2380 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2379 Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
2378 Linear Instability of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability analysis of wake-shear layers in twophase shallow flows is performed in the present paper. Twodimensional shallow water equations are used in the analysis. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. The stability calculations are performed for different values of the particle loading parameter and two other parameters which characterize the velocity ratio and the velocity deficit. The results show that the particle loading parameter has a stabilizing effect on the flow while the increase in the velocity ratio or in the velocity deficit destabilizes the flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
2377 Numerical Analysis of Flow past Circular Cylinder with Triangular and Rectangular Wake Splitter

Authors: Pavan Badami, Vivek Shrivastava, Saravanan V., Nandeesh Hiremath, K. N. Seetharamu

Abstract:

In the present work flow past circular cylinder and cylinder with rectangular and triangular wake splitter is studied to improve aerodynamic parameters. The Comparison of drag coefficient is tabulated for bare cylinder, cylinder with rectangular and triangular wake splitters. Flow past circular cylinder and cylinder with triangular and rectangular wake splitter is performed at Reynoldsnumber 5, 20, 40, 50,80, 100.An incompressible PISO finite volume code employing a non-staggered grid arrangement is used, a second order upwind scheme is used for convective terms. The time discretization is implicit and a Second order Crank-Nicholson scheme is employed. Length of wake splitter in both configurations is taken to be equal to diameter of cylinder. Wake length is found to be less with rectangular wake splitter when compared to bare cylinder and cylinder with triangular wake splitter. Coefficient of drag is found to be less for triangular wake splitter when compared to bare cylinder & cylinder with rectangular wake splitter.

Keywords: Coefficient of drag and pressure, CFDFLUENT, Triangular and rectangular wake splitter, wake length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582
2376 Characterization of the Near-Wake of an Ahmed Body Profile

Authors: Stéphanie Pellerin, Bérengére Podvin, Luc Pastur

Abstract:

In aerovehicles context, the flow around an Ahmed body profile is simulated using the velocity-vorticity formulation of the Navier-Stokes equations, associated to a penalization method for solids and Large Eddy Simulation for turbulence. The study focuses both on the ground influence on the flow and on the dissymetry of the wake, observed for a ground clearance greater than 10% of the body height H. Unsteady and mean flows are presented and analyzed. POD study completes the analysis and gives information on the most energetic structures of the flow.

Keywords: Ahmed body, bi-stability, LES, near wake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
2375 Unsteady Aerodynamics of Multiple Airfoils in Configuration

Authors: Hossain Aziz, Rinku Mukherjee

Abstract:

A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.

Keywords: Aerodynamics, Airfoils, Configuration, Unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
2374 Alternative Approach in Ground Vehicle Wake Analysis

Authors: L. Sterken, S. Sebben, L. Löfdahl

Abstract:

In this paper an alternative visualisation approach of the wake behind different vehicle body shapes with simplified and fully-detailed underbody has been proposed and analysed. This allows for a more clear distinction among the different wake regions. This visualisation is based on a transformation of the cartesian coordinates of a chosen wake plane to polar coordinates, using as filter velocities lower than the freestream. This transformation produces a polar wake plot that enables the division and quantification of the wake in a number of sections. In this paper, local drag has been used to visualise the drag contribution of the flow by the different sections. Visually, a balanced wake can be observed by the concentric behaviour of the polar plots. Alternatively, integration of the local drag of each degree section as a ratio of the total local drag yields a quantifiable approach of the wake uniformity, where different sections contribute equally to the local drag, with the exception of the wheels.

Keywords: Coordinate transformation, ground vehicle, local drag, wake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
2373 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
2372 Multiscale Structures and Their Evolution in a Screen Cylinder Wake

Authors: Azlin M. Azmi, T. Zhou, A. Rinoshika, L. Cheng

Abstract:

The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been educed to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multiresolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequencyf0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d> 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses atx/d =10 before being taken over by the large-scale structures (f0) further downstream.

Keywords: Turbulent structure, screen cylinder, vortex, wavelet multiresolution analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2371 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura

Abstract:

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.

Keywords: Supercavitation, density gradient correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
2370 Investigation of Self-Similarity Solution for Wake Flow of a Cylinder

Authors: A. B. Khoshnevis, F. Zeydabadi, F. Sokhanvar

Abstract:

The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.

Keywords: Self-similarity, wake of single circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
2369 Experimental Study of Frequency Behavior for a Circular Cylinder behind an Airfoil

Authors: S. Bajalan, A. Shadaram, N. Hedayat, A. Shams Taleghani

Abstract:

The interaction between wakes of bluff body and airfoil have profound influences on system performance in many industrial applications, e.g., turbo-machinery and cooling fan. The present work investigates the effect of configuration include; airfoil-s angle of attack, transverse and inline spacing of the models, on frequency behavior of the cylinder-s near-wake. The experiments carried on under subcritical flow regime, using the hot-wire anemometry (HWA). The relationship between the Strouhal numbers and arrangements provide an insight into the global physical processes of wake interaction and vortex shedding.

Keywords: Airfoil, Cylinder, Strouhal, Wake interaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
2368 Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

Authors: Sadeghi H., Mani M., Ardakani M. A.

Abstract:

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Keywords: Unsteady wake, amplitude, mean angle, EPPLER 361 airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
2367 Large Eddy Simulation of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves a numerical simulation of the flow around a NACA2415 airfoil, with a 15°angle of attack, and flow separation control using a rod, It reposes inputting a cylindrical rod upstream of the leading edge in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, non-stationary flow is simulated using ANSYS FLUENT 13. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 51%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
2366 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: T106A turbine cascade, shear-layer separation, steady and unsteady conditions, turbulence models, OpenFOAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
2365 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation

Authors: Aritras Roy, Rinku Mukherjee

Abstract:

The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.

Keywords: Post-stall, unsteady, wing, aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
2364 Scale Effects on the Wake Airflow of a Heavy Truck

Authors: A. Pérard Lecomte, G. Fokoua, A. Mehel, A. Tanière

Abstract:

Automotive experimental measurements in wind tunnel are often conducted on reduced scale. Depending on the study, different similitude parameters are used by researchers to best reproduce the flow at full scale. In this paper, two parameters are investigated, which are Reynolds number and upstream velocity when dealing with airflow of typical urban speed range, below 15 m.s-1. Their impact on flow structures and aerodynamic drag in the wake of a heavy truck model are explored. To achieve this, Computational Fluid Dynamics (CFD) simulations have been conducted with the aim of modeling the wake airflow of full- and reduced-scaled heavy trucks (1/4 and 1/28). The Reynolds Average Navier-Stokes (RANS) approach combined to the Reynolds Stress Model (RSM) as the turbulence model closure was used. Both drag coefficients and upstream velocity profiles (flow topology) were found to be close one another for the three investigated scales, when the dynamical similitude Reynolds is achieved. Moreover, the difference is weak for the simulations based on the same inlet air velocity. Hence, for the relative low velocity range investigated here, the impact of the scale factor is limited.

Keywords: Aerodynamics, CFD, heavy truck, recirculation area, scale effects, similitude parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
2363 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
2362 Discontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter

Authors: W. Lai, A. A. Khan

Abstract:

A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing Runge- Kutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-dimensional shallow water equations. For each slope limiter, three different Riemann solvers based on HLL, LF, and Roe flux functions are used. The proposed water surface based slope limiter scheme is easy to implement and shows better conservation property compared to the slope limiter based on water depth. Of the three flux functions, the Roe approximation provides the best results while the LF function proves to be least suitable when used with either slope limiter scheme.

Keywords: Discontinuous finite element, TVD Runge-Kuttascheme, slope limiters, Riemann solvers, shallow water flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
2361 Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach

Authors: Arash Taheri

Abstract:

In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities.

Keywords: Lagrangian coherent structure, nematode swimming, fluid-structure interaction, immersed boundary method, bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
2360 Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders

Authors: Lavish Ordia, A. Venugopal, Amit Agrawal, S. V. Prabhu

Abstract:

The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes.

Keywords: Flow visualization, Reynolds number, Strouhal number, vortex, vortex formation length, wake width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
2359 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: Unsteady flow, axial turbine, wake, aerodynamic force, loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
2358 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

Authors: Markus Rütten, Olaf Wünsch

Abstract:

Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.

Keywords: Heat transfer, thermo-viscous fluids, shear thinning, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
2357 Tidal Flow Patterns Near A Coastal Headland

Authors: Fu E. Tang, Daoyi Chen

Abstract:

Experimental investigations were carried out in the Manchester Tidal flow Facility (MTF) to study the flow patterns in the region around and adjacent to a hypothetical headland in tidal (oscillatory) ambient flow. The Planar laser-induced fluorescence (PLIF) technique was used for visualization, with fluorescent dye released at specific points around the headland perimeter and in its adjacent recirculation zone. The flow patterns can be generalized into the acceleration, stable flow and deceleration stages for each halfcycle, with small variations according to location, which are more distinct for low Keulegan-Carpenter number (KC) cases. Flow patterns in the mixing region are unstable and complex, especially in the recirculation zone. The flow patterns are in agreement with previous visualizations, and support previous results in steady ambient flow. It is suggested that the headland lee could be a viable location for siting of pollutant outfalls.

Keywords: Planar laser-induced Fluorescence, recirculation zone, tidal flow, wake flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
2356 The Effect of Slow Variation of Base Flow Profile on the Stability of Slightly Curved Mixing Layers

Authors: Irina Eglite, Andrei A. Kolyshkin

Abstract:

The effect of small non-parallelism of the base flow on the stability of slightly curved mixing layers is analyzed in the present paper. Assuming that the instability wavelength is much smaller than the length scale of the variation of the base flow we derive an amplitude evolution equation using the method of multiple scales. The proposed asymptotic model provides connection between parallel flow approximations and takes into account slow longitudinal variation of the base flow.

Keywords: shallow water, parallel flow assumption, weaklynonlinear analysis, method of multiple scales

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
2355 Airliner-UAV Flight Formation in Climb Regime

Authors: Pavel Zikmund, Robert Popela

Abstract:

Extreme formation is a theoretical concept of selfsustain flight when a big airliner is followed by a small UAV glider flying in the airliner wake vortex. The paper presents results of a climb analysis with the goal to lift the gliding UAV to airliners cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Afterwards, flight performance of the UAV in a wake vortex is evaluated by analytical methods. Time history of optimal distance between an airliner and the UAV during a climb is determined. The results are encouraging. Therefore available UAV drag margin for electricity generation is figured out for different vortex models.

Keywords: Flight in formation, self-sustained flight, UAV, wake vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2354 Experimental Measurements of Mean and Turbulence Quantities behind the Circular Cylinder by Attaching Different Number of Tripping Wires

Authors: Amir Bak Khoshnevis, Mahdieh Khodadadi, Aghil Lotfi

Abstract:

For a bluff body, roughness elements in simulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake, and lower form drag. In the present work, flow past a circular cylinder with using tripping wires is studied experimentally. The wind tunnel used for modeling free stream is open blow circuit (maximum speed = 30m/s and maximum turbulence of free stream = 0.1%). The selected Reynolds number for all tests was constant (Re = 25000). The circular cylinder selected for this experiment is 20 and 400mm in diameter and length, respectively. The aim of this research is to find the optimal operation mode. In this study installed some tripping wires 1mm in diameter, with a different number of wires on the circular cylinder and the wake characteristics of the circular cylinder is studied. Results showed that by increasing number of tripping wires attached to the circular cylinder (6, 8, and 10, respectively), The optimal angle for the tripping wires with 1mm in diameter to be installed on the cylinder is 60̊ (or 6 wires required at angle difference of 60̊). Strouhal number for the cylinder with tripping wires 1mm in diameter at angular position 60̊ showed the maximum value.

Keywords: Wake of a circular cylinder, trip wire, velocity defect, Strouhal number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
2353 Study of Aerodynamic Characteristics of the Unmanned Aircraft in the Wake

Authors: O. Solovyov, S. Eryomenko, V. Kobrin, V. Chmovzh

Abstract:

The methodology of numerical simulation and calculation of aerodynamic characteristics of aircraft taking into account impact of wake on it has been developed. The results of numerical experiment in comparison with the data obtained in the wind tunnel are presented. Efficiency of methodology of calculation and the reliability of the results is shown.

Keywords: Unmanned aircraft, vortex wake, aerodynamic characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
2352 Numerical Study of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895
2351 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos

Abstract:

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Keywords: Oscillating water column, Shallow flow, Waveenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420